Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helenius J. Schelhaas is active.

Publication


Featured researches published by Helenius J. Schelhaas.


Nature Genetics | 2009

Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis

Michael A. van Es; Jan H. Veldink; Christiaan G.J. Saris; Hylke M. Blauw; Paul W.J. van Vught; Anna Birve; Robin Lemmens; Helenius J. Schelhaas; Ewout J.N. Groen; Mark H. B. Huisman; Anneke J. van der Kooi; Marianne de Visser; Caroline Dahlberg; Karol Estrada; Fernando Rivadeneira; Albert Hofman; Machiel J. Zwarts; Perry T.C. van Doormaal; Dan Rujescu; Eric Strengman; Ina Giegling; Pierandrea Muglia; Barbara Tomik; Agnieszka Slowik; André G. Uitterlinden; Corinna Hendrich; Stefan Waibel; Thomas Meyer; Albert C. Ludolph; Jonathan D. Glass

We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 × 10−4 in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 × 10−9. This SNP showed robust replication in the second cohort (P = 1.86 × 10−6), and a combined analysis over the two stages yielded P = 2.53 × 10−14. The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 × 10−9, and rs3849942, with P = 1.01 × 10−8) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.


Nature Genetics | 2008

Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Ludo Van Den Bosch; Sonja W. de Jong; Vianney de Jong; Frank Baas; Ruben van 't Slot; Robin Lemmens; Helenius J. Schelhaas; Anna Birve; K Sleegers; Christine Van Broeckhoven; Jennifer C. Schymick; Bryan J. Traynor; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Peter Andersen; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

We identified a SNP in the DPP6 gene that is consistently strongly associated with susceptibility to amyotrophic lateral sclerosis (ALS) in different populations of European ancestry, with an overall P value of 5.04 × 10−8 in 1,767 cases and 1,916 healthy controls and with an odds ratio of 1.30 (95% confidence interval (CI) of 1.18–1.43). Our finding is the first report of a genome-wide significant association with sporadic ALS and may be a target for future functional studies.


Brain | 2012

The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions.

Javier Simón-Sánchez; Elise G.P. Dopper; Petra E. Cohn-Hokke; Renate K. Hukema; Nayia Nicolaou; Harro Seelaar; J. Roos A. de Graaf; Inge de Koning; Natasja M. van Schoor; Dorly J. H. Deeg; Marion Smits; Joost Raaphorst; Leonard H. van den Berg; Helenius J. Schelhaas; Christine E. M. de Die-Smulders; Danielle Majoor-Krakauer; Annemieke Rozemuller; Rob Willemsen; Yolande A.L. Pijnenburg; Peter Heutink; John C. van Swieten

There is increasing evidence that frontotemporal dementia and amyotrophic lateral sclerosis are part of a disease continuum. Recently, a hexanucleotide repeat expansion in C9orf72 was identified as a major cause of both sporadic and familial frontotemporal dementia and amyotrophic lateral sclerosis. The aim of this study was to investigate clinical and neuropathological characteristics of hexanucleotide repeat expansions in C9orf72 in a large cohort of Dutch patients with frontotemporal dementia. Repeat expansions were successfully determined in a cohort of 353 patients with sporadic or familial frontotemporal dementia with or without amyotrophic lateral sclerosis, and 522 neurologically normal controls. Immunohistochemistry was performed in a series of 10 brains from patients carrying expanded repeats using a panel of antibodies. In addition, the presence of RNA containing GGGGCC repeats in paraffin-embedded sections of post-mortem brain tissue was investigated using fluorescence in situ hybridization with a locked nucleic acid probe targeting the GGGGCC repeat. Hexanucleotide repeat expansions in C9orf72 were found in 37 patients with familial (28.7%) and five with sporadic frontotemporal dementia (2.2%). The mean age at onset was 56.9 ± 8.3 years (range 39-76), and disease duration 7.6 ± 4.6 years (range 1-22). The clinical phenotype of these patients varied between the behavioural variant of frontotemporal dementia (n = 34) and primary progressive aphasia (n = 8), with concomitant amyotrophic lateral sclerosis in seven patients. Predominant temporal atrophy on neuroimaging was present in 13 of 32 patients. Pathological examination of the 10 brains from patients carrying expanded repeats revealed frontotemporal lobar degeneration with neuronal transactive response DNA binding protein-positive inclusions of variable type, size and morphology in all brains. Fluorescence in situ hybridization analysis of brain material from patients with the repeat expansion, a microtubule-associated protein tau or a progranulin mutation, and controls did not show RNA-positive inclusions specific for brains with the GGGGCC repeat expansion. The hexanucleotide repeat expansion in C9orf72 is an important cause of frontotemporal dementia with and without amyotrophic lateral sclerosis, and is sometimes associated with primary progressive aphasia. Neuropathological hallmarks include neuronal and glial inclusions, and dystrophic neurites containing transactive response DNA binding protein. Future studies are needed to explain the wide variation in clinical presentation.


Lancet Neurology | 2007

ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study

Michael A. van Es; Paul W.J. van Vught; Hylke M. Blauw; Lude Franke; Christiaan G.J. Saris; Peter Andersen; Ludo Van Den Bosch; Sonja W. de Jong; Ruben van 't Slot; Anna Birve; Robin Lemmens; Vianney de Jong; Frank Baas; Helenius J. Schelhaas; Kristel Sleegers; Christine Van Broeckhoven; John H. J. Wokke; Cisca Wijmenga; Wim Robberecht; Jan H. Veldink; Roel A. Ophoff; Leonard H. van den Berg

BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised by progressive degeneration of motor neurons in the brain and spinal cord. ALS is thought to be multifactorial, with both environmental and genetic causes. Our aim was to identify genetic variants that predispose for sporadic ALS. METHODS We did a three-stage genome-wide association study in 461 patients with ALS and 450 controls from The Netherlands, using Illumina 300K single-nucleotide polymorphism (SNP) chips. The SNPs that were most strongly associated with ALS were analysed in a further 876 patients and 906 controls in independent sample series from The Netherlands, Belgium, and Sweden. We also investigated the possible pathological functions of associated genes using expression data from whole blood of patients with sporadic ALS and of control individuals who were included in the genome-wide association study. FINDINGS A genetic variant in the inositol 1,4,5-triphosphate receptor 2 gene (ITPR2) was associated with ALS (p=0.012 after Bonferroni correction). Combined analysis of all samples (1337 patients and 1356 controls) confirmed this association (p=3.28x10(-6), odds ratio 1.58, 95% CI 1.30-1.91). ITPR2 expression was greater in the peripheral blood of 126 ALS patients than in that of 126 healthy controls (p=0.00016). INTERPRETATION Genetic variation in ITPR2 is a susceptibility factor for ALS. ITPR2 is a strong candidate susceptibility gene for ALS because it is involved in glutamate-mediated neurotransmission, is one of the main regulators of intracellular calcium concentrations, and has an important role in apoptosis.


Nature Genetics | 2010

Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C

Michaela Auer-Grumbach; Andrea Olschewski; Lea Papić; Hannie Kremer; Meriel McEntagart; Sabine Uhrig; Carina Fischer; Eleonore Fröhlich; Zoltán Bálint; Bi Tang; Heimo Strohmaier; Hanns Lochmüller; Beate Schlotter-Weigel; Jan Senderek; Angelika Krebs; Katherine J. Dick; Richard Petty; Cheryl Longman; Neil E. Anderson; George W. Padberg; Helenius J. Schelhaas; Conny M. A. van Ravenswaaij-Arts; Thomas R. Pieber; Andrew H. Crosby; Christian Guelly

Spinal muscular atrophies (SMA, also known as hereditary motor neuropathies) and hereditary motor and sensory neuropathies (HMSN) are clinically and genetically heterogeneous disorders of the peripheral nervous system. Here we report that mutations in the TRPV4 gene cause congenital distal SMA, scapuloperoneal SMA, HMSN 2C. We identified three missense substitutions (R269H, R315W and R316C) affecting the intracellular N-terminal ankyrin domain of the TRPV4 ion channel in five families. Expression of mutant TRPV4 constructs in cells from the HeLa line revealed diminished surface localization of mutant proteins. In addition, TRPV4-regulated Ca2+ influx was substantially reduced even after stimulation with 4αPDD, a TRPV4 channel-specific agonist, and with hypo-osmotic solution. In summary, we describe a new hereditary channelopathy caused by mutations in TRPV4 and present evidence that the resulting substitutions in the N-terminal ankyrin domain affect channel maturation, leading to reduced surface expression of functional TRPV4 channels.


Human Molecular Genetics | 2012

Evidence for an oligogenic basis of amyotrophic lateral sclerosis

Marka van Blitterswijk; Michael A. van Es; Eric A.M. Hennekam; Dennis Dooijes; Wouter van Rheenen; Jelena Medic; Pierre R. Bourque; Helenius J. Schelhaas; Anneke J. van der Kooi; Marianne de Visser; Paul I. W. de Bakker; Jan H. Veldink; Leonard H. van den Berg

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a substantial heritable component. In pedigrees affected by its familial form, incomplete penetrance is often observed. We hypothesized that this could be caused by a complex inheritance of risk variants in multiple genes. Therefore, we screened 111 familial ALS (FALS) patients from 97 families, and large cohorts of sporadic ALS (SALS) patients and control subjects for mutations in TAR DNA-binding protein (TARDBP), fused in sarcoma/translated in liposarcoma (FUS/TLS), superoxide dismutase-1 (SOD1), angiogenin (ANG) and chromosome 9 open reading frame 72 (C9orf72). Mutations were identified in 48% of FALS families, 8% of SALS patients and 0.5% of control subjects. In five of the FALS families, we identified multiple mutations in ALS-associated genes. We detected FUS/TLS and TARDBP mutations in combination with ANG mutations, and C9orf72 repeat expansions with TARDBP, SOD1 and FUS/TLS mutations. Statistical analysis demonstrated that the presence of multiple mutations in FALS is in excess of what is to be expected by chance (P = 1.57 × 10(-7)). The most compelling evidence for an oligogenic basis was found in individuals with a p.N352S mutation in TARDBP, detected in five FALS families and three apparently SALS patients. Genealogical and haplotype analyses revealed that these individuals shared a common ancestor. We obtained DNA of 14 patients with this TARDBP mutation, 50% of whom had an additional mutation (ANG, C9orf72 or homozygous TARDBP). Hereby, we provide evidence for an oligogenic aetiology of ALS. This may have important implications for the interpretation of whole exome/genome experiments designed to identify new ALS-associated genes and for genetic counselling, especially of unaffected family members.


European Journal of Human Genetics | 2013

The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder.

Bradley Smith; Stephen Newhouse; Aleksey Shatunov; Caroline Vance; Simon Topp; Lauren Johnson; John Miller; Youn Bok Lee; Claire Troakes; Kirsten M. Scott; Ashley Jones; Ian Gray; Jamie Wright; Tibor Hortobágyi; Safa Al-Sarraj; Boris Rogelj; John Powell; Michelle K. Lupton; Simon Lovestone; Peter C. Sapp; Markus Weber; Peter J. Nestor; Helenius J. Schelhaas; Anneloor ten Asbroek; Vincenzo Silani; Cinzia Gellera; Franco Taroni; Nicola Ticozzi; Leonard H. van den Berg; Jan H. Veldink

A massive hexanucleotide repeat expansion mutation (HREM) in C9ORF72 has recently been linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we describe the frequency, origin and stability of this mutation in ALS+/−FTD from five European cohorts (total n=1347). Single-nucleotide polymorphisms defining the risk haplotype in linked kindreds were genotyped in cases (n=434) and controls (n=856). Haplotypes were analysed using PLINK and aged using DMLE+. In a London clinic cohort, the HREM was the most common mutation in familial ALS+/−FTD: C9ORF72 29/112 (26%), SOD1 27/112 (24%), TARDBP 1/112 (1%) and FUS 4/112 (4%) and detected in 13/216 (6%) of unselected sporadic ALS cases but was rare in controls (3/856, 0.3%). HREM prevalence was high for familial ALS+/−FTD throughout Europe: Belgium 19/22 (86%), Sweden 30/41 (73%), the Netherlands 10/27 (37%) and Italy 4/20 (20%). The HREM did not affect the age at onset or survival of ALS patients. Haplotype analysis identified a common founder in all 137 HREM carriers that arose around 6300 years ago. The haplotype from which the HREM arose is intrinsically unstable with an increased number of repeats (average 8, compared with 2 for controls, P<10−8). We conclude that the HREM has a single founder and is the most common mutation in familial and sporadic ALS in Europe.


Journal of Neurology, Neurosurgery, and Psychiatry | 2011

Population based epidemiology of amyotrophic lateral sclerosis using capture–recapture methodology

Mark H. B. Huisman; S.W. de Jong; P. T. C. van Doormaal; S. Weinreich; Helenius J. Schelhaas; A.J. van der Kooi; M. de Visser; J. H. Veldink; L. H. van den Berg

Background Variation in the incidence rate in epidemiological studies on amyotrophic lateral sclerosis (ALS) may be due to a small population size and under ascertainment of patients. The previously reported incidence decline in the elderly and a decrease in the male:female ratio in postmenopausal age groups have yet to be confirmed. Methods ALS epidemiology in a large population based register in The Netherlands was studied between 1 January 2006 and 31 December 2009, and applied capture–recapture methodology in separate age and gender groups to adjust for the number of unobserved patients. Results 1217 incident patients were observed, and a capture–recapture incidence of 2.77 per 100 000 person-years (95% CI 2.63 to 2.91). Prevalence on 31 December 2008 was 10.32 per 100 000 individuals (95% CI 9.78 to 10.86). The incident cohort had a higher median age at onset (63.0 vs 58.1 years) and more bulbar onset patients (30.0% vs 19.1%) compared with the prevalent cohort. Incidence and prevalence peaked in the 70–74 year age group followed by a rapid decline in older age. The male:female ratio in the premenopausal age group (1.91, 95% CI 1.32 to 2.79) was not significantly higher than that in the postmenopausal age group (1.50, 95% CI 1.34 to 1.67). Conclusion The marked difference in patient characteristics between incident and prevalent cohorts underscores the importance of including incident patients when studying susceptibility or disease modifying factors in ALS. The incidence decline in the elderly may suggest that ALS is not merely the result of ageing. Absence of a significant postmenopausal drop in the male:female ratio suggests that the protective role of female sex hormones in ALS is limited.


Annals of Neurology | 2013

Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis

Helma Pluk; Bas J. A. van Hoeve; Sander H. J. van Dooren; Judith Stammen-Vogelzangs; Annemarie van der Heijden; Helenius J. Schelhaas; Marcel M. Verbeek; Umesh A. Badrising; Snjolaug Arnardottir; Karina Roxana Gheorghe; Ingrid E. Lundberg; Wilbert C. Boelens; Baziel G.M. van Engelen; Ger J. M. Pruijn

Sporadic inclusion body myositis (sIBM) is an inflammatory myopathy characterized by both degenerative and autoimmune features. In contrast to other inflammatory myopathies, myositis‐specific autoantibodies had not been found in sIBM patients until recently. We used human skeletal muscle extracts as a source of antigens to detect autoantibodies in sIBM and to characterize the corresponding antigen.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.

Collaboration


Dive into the Helenius J. Schelhaas's collaboration.

Top Co-Authors

Avatar

Machiel J. Zwarts

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick F. Stegeman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Bert U. Kleine

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge