Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helga Kecova is active.

Publication


Featured researches published by Helga Kecova.


Investigative Ophthalmology & Visual Science | 2013

Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

Kabhilan Mohan; Helga Kecova; Elena Hernandez-Merino; Randy H. Kardon; Matthew M. Harper

PURPOSE To evaluate retina and optic nerve damage following experimental blast injury. METHODS Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. RESULTS Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. CONCLUSIONS Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.


Investigative Ophthalmology & Visual Science | 2010

Functional and Structural Changes in a Canine Model of Hereditary Primary Angle-Closure Glaucoma

Sinisa D. Grozdanic; Helga Kecova; Matthew M. Harper; W. Nilaweera; Markus H. Kuehn; Randy H. Kardon

PURPOSE To characterize functional and structural changes in a canine model of hereditary primary angle-closure glaucoma. METHODS Intraocular pressure (IOP) was evaluated with tonometry in a colony of glaucomatous dogs at 8, 15, 18, 20, and 30 months of age. Retinal function was evaluated using electroretinography (scotopic, photopic, and pattern). Examination of anterior segment structures was performed using gonioscopy and high-frequency ultrasonography (HFU). RESULTS A gradual rise in IOP was observed with an increase in age: 8 months, 14 mm Hg (median value); 15 months, 15.5 mm Hg; 18 months, 17.5 mm Hg; 20 months, 24 mm Hg; 30 months, 36 mm Hg. Provocative testing with mydriatic agents (tropicamide and atropine 1%) caused significant increases in IOP (35% and 50%, respectively). HFU analysis showed complete collapse of iridocorneal angles by 20 months of age. Scotopic and photopic ERG analysis did not reveal significant deficits, but pattern ERG analysis showed significantly reduced amplitudes in glaucomatous dogs (glaucoma, 3.5 +/- 0.4 muV; control, 6.2 +/- 0.3 muV; P = 0.004; Students t-test). Histologic analysis revealed collapse of the iridocorneal angle, posterior bowing of the lamina cribrosa, swelling and loss of large retinal ganglion cells, increased glial reactivity, and increased thickening of the lamina cribrosa. CONCLUSIONS Canine hereditary angle-closure glaucoma is characterized by a progressive increase in intraocular pressure, loss of optic nerve function, and retinal ganglion cell loss.


Veterinary Clinics of North America-small Animal Practice | 2008

Antibody-Mediated Retinopathies in Canine Patients: Mechanism, Diagnosis, and Treatment Modalities

Sinisa D. Grozdanic; Matthew M. Harper; Helga Kecova

Antibody-mediated retinopathies may be widely present among the canine population. Early diagnosis and appropriate treatment are essential for visual preservation and reversal of blindness in these patients. The principal purpose of this review is to describe the mechanistic basis, clinical signs, diagnostic methods, and treatment options for retinal diseases causing sudden onset of blindness with absence of typical signs of intraocular inflammation or retinal degeneration-sudden acquired retinal degeneration syndrome and immune-mediated retinitis.


Veterinary Ophthalmology | 2011

Spectral domain optical coherence tomography (SD‐OCT) assessment of the healthy female canine retina and optic nerve

Elena Hernandez-Merino; Helga Kecova; Samantha J. Jacobson; Karl N. Hamouche; Richard N. Nzokwe; Sinisa D. Grozdanic

OBJECTIVE To provide normative data for canine whole retinal thickness (WRT), nerve fiber layer thickness (NFL), photoreceptor layer thickness (PR), and outer nuclear layer thickness (ONL) using spectral domain optical coherence tomography. ANIMAL STUDIED Twelve healthy adult intact female beagles. PROCEDURE Horizontal volume scans through the area dorso-temporal from the optic nerve (superior retina), and the area ventro-temporal from the optic nerve (inferior retina) were used to evaluate the thickness of retinal NFL, PR, ONL, and WRT. Peripapillary circular scans were used to evaluate NFL thickness. Statistical analyses were performed to compare the thickness of the individual layers between the superior and inferior retina (paired t-test). One-way analysis of variance (ANOVA) was used to compare the thickness of peripapillary NFL between the superior, inferior, temporal and nasal quadrants of the circle scan. RESULTS The WRT, PR, and NFL thickness were greater in the superior than in the inferior retina (198.7 ± 9.6 μm vs. 164.4 ± 6.4 μm, P < 0.0001; 95.5 ± 6.5 μm vs. 78.8 ± 7.4 μm, P < 0.0001; and 26.4 ± 1.6 μm vs. 25.0 ± 1.9 μm, P = 0.0236, respectively). No statistical difference was found between the ONL thickness of the superior and inferior retina (50.1 ± 6.4 μm vs. 44.3 ± 3.6, P = 0.0578). Peripapillary NFL thickness showed a similar tendency as the linear scans, with the superior quadrant having the greatest thickness (91.26 ± 7.0 μm) and the inferior quadrant being the thinnest (76.42 ± 9.2 μm) (P < 0.001). CONCLUSIONS Results of our in vivo studies showed significant differences between thickness values for the superior (tapetal) and inferior (nontapetal) retinal regions.


PLOS ONE | 2015

Variants in Nebulin (NEB) Are Linked to the Development of Familial Primary Angle Closure Glaucoma in Basset Hounds.

Dina Ahram; Sinisa D. Grozdanic; Helga Kecova; Arjen Henkes; Rob W.J. Collin; Markus H. Kuehn

Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG), which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB) was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity). Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG.


Veterinary Ophthalmology | 2012

Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography

Kabhilan Mohan; Matthew M. Harper; Helga Kecova; Eun-Ah Ye; Tatjana Lazic; Donald S. Sakaguchi; Randy H. Kardon; Sinisa D. Grozdanic

OBJECTIVE To perform in vivo analysis of retinal functional and structural parameters in healthy mouse eyes. ANIMAL STUDIED Adult C57BL/6 male mice (n = 37). PROCEDURES Retinal function was evaluated using pattern electroretinography (pERG) and the chromatic pupil light reflex (cPLR). Structural properties of the retina and nerve fiber layer (NFL) were evaluated using spectral-domain optical coherence tomography (SD-OCT). RESULTS The average pERG amplitudes were found to be 11.2 ± 0.7 μV (P50-N95, mean ± SEM), with an implicit time for P50-N95 interval of 90.4 ± 5.4 ms. Total retinal thickness was 229.5 ± 1.7 μm (mean ± SEM) in the area centralis region. The thickness of the retinal nerve fiber layer (mean ± SEM) using a circular peripapillary retinal scan centered on the optic nerve was 46.7 ± 0.9 μm (temporal), 46.1 ± 0.9 μm (superior), 45.8 ± 0.9 μm (nasal), and 48.4 ± 1 μm (inferior). The baseline pupil diameter was 2.1 ± 0.05 mm in darkness, and 1.1 ± 0.05 and 0.56 ± 0.03 mm after stimulation with red (630 nm, luminance 200 kcd/m(2)) or blue (480 nm, luminance 200 kcd/m(2)) light illumination, respectively. CONCLUSIONS Pattern electroretinography, cPLR and SD-OCT analysis are reproducible techniques, which can provide important information about retinal and optic nerve function and structure in mice.


Veterinary Ophthalmology | 2013

Rapid diagnosis of retina and optic nerve abnormalities in canine patients with and without cataracts using chromatic pupil light reflex testing

Sinisa D. Grozdanic; Helga Kecova; Tatjana Lazic

OBJECTIVE To develop fast and reliable testing routines for diagnosing retina and optic nerve diseases in canine cataract patients based on chromatic properties of the pupillary light reflex response. PROCEDURES Seventy-seven canine patients with a history of cataract and decreased vision (43 patients with cataracts and no evidence of retina or optic nerve disease, 21 patients with cataracts and retinal degeneration [RD], 13 patients with cataracts and retinal detachment [RDT]), 11 canine patients with optic neuritis (ON) and 23 healthy dogs were examined using chromatic pupillary light reflex (cPLR) analysis with red and blue light and electroretinography. RESULTS Electroretinography analysis showed statistically significant deficits in a- and b-wave amplitudes in dogs with cataracts and RD, or cataracts and RDT, when compared to dogs with cataracts without evidence of retinal abnormalities. Evaluation of b-wave amplitudes showed that presence of 78.5-μV (or lower) amplitudes had high sensitivity of 100% (95% CI: 87.2-100%) and high specificity of 96.7% (95% CI: 88.4-100%) in RD and RDT. Evaluation of cPLR responses using red light showed that presence of the pupil end constriction diameter of 5.5 mm (or higher) had moderately high sensitivity of 76.5% (95% CI: 50.1-93.2%) and high specificity of 100% (95% CI: 91.2-100%) in detecting RD and RDT. Optic neuritis patients had absent cPLR responses, regardless of the visual status. CONCLUSIONS AND CLINICAL RELEVANCE Chromatic evaluation of the pupillary light reflex is a rapid and accurate test for diagnosing retina and optic nerve diseases in canine patients.


Journal of Biomedical Optics | 2011

Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

Qi Wang; Sinisa D. Grozdanic; Matthew M. Harper; Nicholas Hamouche; Helga Kecova; Tatjana Lazic; Chenxu Yu

Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.


Journal of Biomedical Optics | 2013

Detection and characterization of glaucoma-like canine retinal tissues using Raman spectroscopy

Qi Wang; Sinisa D. Grozdanic; Matthew M. Harper; Karl N. Hamouche; Nicholas Hamouche; Helga Kecova; Tatjana Lazic; Elena Hernandez-Merino; Chenxu Yu

Abstract. Early detection of pathological changes and progression in glaucoma and other neuroretinal diseases remains a great challenge and is critical to reduce permanent structural and functional retina and optic nerve damage. Raman spectroscopy is a sensitive technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, spectroscopic analysis was conducted on the retinal tissues of seven beagles with acute elevation of intraocular pressure (AEIOP), six beagles with compressive optic neuropathy (CON), and five healthy beagles. Spectroscopic markers were identified associated with the different neuropathic conditions. Furthermore, the Raman spectra were subjected to multivariate discriminate analysis to classify independent tissue samples into diseased/healthy categories. The multivariate discriminant model yielded an average optimal classification accuracy of 72.6% for AEIOP and 63.4% for CON with 20 principal components being used that accounted for 87% of the total variance in the data set. A strong correlation (R2>0.92) was observed between pattern electroretinography characteristics of AEIOP dogs and Raman separation distance that measures the separation of spectra of diseased tissues from normal tissues; however, the underlining mechanism of this correlation remains to be understood. Since AEIOP mimics the pathological symptoms of acute/early-stage glaucoma, it was demonstrated that Raman spectroscopic screening has the potential to become a powerful tool for the detection and characterization of early-stage disease.


Veterinary Ophthalmology | 2018

Optical coherence tomography and molecular analysis of sudden acquired retinal degeneration syndrome (SARDS) eyes suggests the immune-mediated nature of retinal damage

Sinisa D. Grozdanic; Tatjana Lazic; Helga Kecova; Kabhilan Mohan; Markus H. Kuehn

Abstract Objective To perform detailed analysis of retinal changes in dogs with SARDS using optical coherence tomography (OCT), funduscopy, and molecular analysis. Animals Subjects were 29 dogs from 12 US states and Canada diagnosed with SARDS by 8 ophthalmologists. An additional 7 eyes from 5 deceased SARDS dogs were used for molecular and histological analysis. Procedures Dogs were evaluated using chromatic pupil light reflex testing (cPLR), and electroretinography (ERG); subjects underwent complete ophthalmic examination, including funduscopy, retinal photography, and OCT, in addition to complete laboratory analysis, blood pressure evaluation, abdominal and thoracic radiographs, and computerized tomography (CT) imaging to assess possible systemic abnormalities. Histology and immunohistochemistry analysis was performed in 2 SARDS eyes. Microarray analysis was performed in 5 SARDS retinas. Results Thirty‐eight percent of patients had <1‐mm wide retinal detachments (RD) on OCT analysis, which could not be detected by funduscopy or retinal photographs. Systemic hypertension did not seem to be a contributing factor (RD 22.2%; ND 20%, Odds ratio = 1.1). No dogs showed neoplastic changes by thoracic or abdominal radiography, or CT imaging. There was no statistically significant difference in age (RD 7.9 ± 1.9 years (mean ± SD); ND 7.6 ± 1.7 years, p = 0.69) or duration of blindness prior to presentation (RD 18 ± 7 days (mean±SD); ND 21 ± 12 days, p = 0.28). Microarray and histology analysis of SARDS eyes revealed molecular changes suggestive of immune‐mediated damage. Conclusions Observed histological, molecular, and OCT changes are highly suggestive of immune‐mediated damage in SARDS eyes.

Collaboration


Dive into the Helga Kecova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenxu Yu

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge