Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helge A. Wurdemann is active.

Publication


Featured researches published by Helge A. Wurdemann.


IEEE Transactions on Industrial Electronics | 2014

Control Design for Interval Type-2 Fuzzy Systems Under Imperfect Premise Matching

Hak-Keung Lam; Hongyi Li; Christian Deters; Emanuele Lindo Secco; Helge A. Wurdemann; Kaspar Althoefer

This paper focuses on designing interval type-2 (IT2) control for nonlinear systems subject to parameter uncertainties. To facilitate the stability analysis and control synthesis, an IT2 Takagi-Sugeno (T-S) fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are captured by IT2 membership functions characterized by the lower and upper membership functions. A novel IT2 fuzzy controller is proposed to perform the control process, where the membership functions and number of rules can be freely chosen and different from those of the IT2 T-S fuzzy model. Consequently, the IT2 fuzzy-model-based (FMB) control system is with imperfectly matched membership functions, which hinders the stability analysis. To relax the stability analysis for this class of IT2 FMB control systems, the information of footprint of uncertainties and the lower and upper membership functions are taken into account for the stability analysis. Based on the Lyapunov stability theory, some stability conditions in terms of linear matrix inequalities are obtained to determine the system stability and achieve the control design. Finally, simulation and experimental examples are provided to demonstrate the effectiveness and the merit of the proposed approach.


international conference on robotics and automation | 2014

A three-axial body force sensor for flexible manipulators

Yohan Noh; Sina Sareh; Jungwhan Back; Helge A. Wurdemann; Tommaso Ranzani; Emanuele Lindo Secco; Angela Faragasso; Hongbin Liu; Kaspar Althoefer

This paper introduces an optical based three axis force sensor which can be integrated with the robot arm of the EU project STIFF-FLOP (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations) in order to measure applied external forces. The structure of the STIFF-FLOP arm is free of metal components and electric circuits and, hence, is inherently safe near patients during surgical operations. In addition, this feature makes the performance of this sensing system immune against strong magnetic fields inside magnetic resonance (MR) imaging scanners. The hollow structure of the sensor allows the implementation of distributed actuation and sensing along the body of the manipulator. In this paper, we describe the design and calibration procedure of the proposed three axis optics-based force sensor. The experimental results confirm the effectiveness of our optical sensing approach and its applicability to determine the force and momentum components during the physical interaction of the robot arm with its environment.


intelligent robots and systems | 2014

Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle

Agostino Stilli; Helge A. Wurdemann; Kaspar Althoefer

This paper explores a new hybrid actuation principle combining pneumatic and tendon-driven actuators for a soft robotic manipulator. The fusion of these two actuation principles leads to an overall antagonistic actuation mechanism whereby pneumatic actuation opposes tendon actuation - a mechanism commonly found in animals where muscles can oppose each other to vary joint stiffness. We are taking especially inspiration from the octopus who belongs to the class of Cephalopoda; the octopus uses its longitudinal and transversal muscles in its arms to achieve varied motion patterns; activating both sets of muscles, the octopus can control the arm stiffness over a wide range. Our approach mimics this behavior and achieves comparable motion patterns, including bending, elongation and stiffening. The proposed method combines the advantages of tendon-driven and pneumatic actuated systems and goes beyond what current soft, flexible robots can achieve: because the new robot structure is effectively an inflatable, sleeve, it can be pumped up to its fully inflated volume and, also, completely deflated and shrunk. Since, in the deflated state, it comprises just its outer “skin” and tendons, the robot can be compressed to a very small size, many times smaller when compared to its fully-inflated state. In this paper, we describe the mechanical structure of the soft manipulator. Proof-of-concept experiments focus on the robots ability to bend, to morph from completely shrunk to entirely inflated as well as to vary its stiffness.


IEEE Transactions on Control Systems and Technology | 2015

Accurate Bolt Tightening using Model-Free Fuzzy Control for Wind Turbine Hub Bearing Assembly

Christian Deters; Hak-Keung Lam; Emanuele Lindo Secco; Helge A. Wurdemann; Lakmal D. Seneviratne; Kaspar Althoefer

In the modern wind turbine industry, one of the core processes is the assembly of the bolt-nut connections of the hub, which requires tightening bolts and nuts to obtain well-distributed clamping force all over the hub. This force deals with nonlinear uncertainties due to the mechanical properties and it depends on the final torque and relative angular position of the bolt/nut connection. This paper handles the control problem of automated bolt tightening processes. To develop a controller, the process is divided into four stages, according to the mechanical characteristics of the bolt/nut connection: a fuzzy logic controller (FLC) with expert knowledge of tightening process and error detection capability is proposed. For each one of the four stages, an individual FLC is designed to address the highly nonlinearity of the system and the error scenarios related to that stage, to promptly prevent and avoid mechanical damage. The FLC is implemented and real time executed on an industrial PC and finally validated. Experimental results show the performance of the controller to reach precise torque and angle levels as well as desired clamping force. The capability of error detection is also validated.


international conference on robotics and automation | 2014

Bio-inspired tactile sensor sleeve for surgical soft manipulators

Sina Sareh; Allen Jiang; Angela Faragasso; Yohan Noh; Thrishantha Nanayakkara; Prokar Dasgupta; Lakmal D. Seneviratne; Helge A. Wurdemann; Kaspar Althoefer

Robotic manipulators for Robot-assisted Minimally Invasive Surgery (RMIS) pass through small incisions into the patients body and interact with soft internal organs. The performance of traditional robotic manipulators such as the da Vinci Robotic System is limited due to insufficient flexibility of the manipulator and lack of haptic feedback. Modern surgical manipulators have taken inspiration from biology e.g. snakes or the octopus. In order for such soft and flexible arms to reconfigure itself and to control its pose with respect to organs as well as to provide haptic feedback to the surgeon, tactile sensors can be integrated with the robots flexible structure. The work presented here takes inspiration from another area of biology: cucumber tendrils have shown to be ideal tactile sensors for the plant that they are associated with providing useful environmental information during the plants growth. Incorporating the sensing principles of cucumber tendrils, we have created miniature sensing elements that can be distributed across the surface of soft manipulators to form a sensor network capable of acquire tactile information. Each sensing element is a retractable hemispherical tactile measuring applied pressure. The actual sensing principle chosen for each tactile makes use of optic fibres that transfer light signals modulated by the applied pressure from the sensing element to the proximal end of the robot arm. In this paper, we describe the design and structure of the sensor system, the results of an analysis using Finite Element Modeling in ABAQUS as well as sensor calibration and experimental results. Due to the simple structure of the proposed tactile sensor element, it is miniaturisable and suitable for MIS. An important contribution of this work is that the developed sensor system can be ”loosely” integrated with a soft arm effectively operating independently of the arm and without affecting the arms motion during bending or elongation.


IEEE Sensors Journal | 2014

Magnetic Resonance-Compatible Tactile Force Sensor Using Fiber Optics and Vision Sensor

Hui Xie; Allen Jiang; Helge A. Wurdemann; Hongbin Liu; Lakmal D. Seneviratne; Kaspar Althoefer

This paper presents a fiber optic based tactile array sensor that can be employed in magnetic resonance environments. In contrast to conventional sensing approaches, such as resistive or capacitive-based sensing methods, which strongly rely on the generation and transmission of electronics signals, here electromagnetically isolated optical fibers were utilized to develop the tactile array sensor. The individual sensing elements of the proposed sensor detect normal forces; fusing the information from the individual elements allows the perception of the shape of probed objects. Applied forces deform a micro-flexure inside each sensor tactel, displacing a miniature mirror which, in turn, modulates the light intensity introduced by a transmitting fiber connected to a light source at its proximal end. For each tactel, the light intensity is read by a receiving fiber connected directly to a 2-D vision sensor. Computer software, such as MATLAB, is used to process the images received by the vision sensor. The calibration process was conducted by relating the applied forces to the number of activated pixels for each image received from a receiving fiber. The proposed approach allows the concurrent acquisition of data from multiple tactile sensor elements using a vision sensor such as a standard video camera. Test results of force responses and shape detection have proven the viability of this sensing concept.


international conference on robotics and automation | 2014

Novel uniaxial force sensor based on visual information for minimally invasive surgery

Angela Faragasso; Joao Bimbo; Yohan Noh; Allen Jiang; Sina Sareh; Hongbin Liu; Thrishantha Nanayakkara; Helge A. Wurdemann; Kaspar Althoefer

This paper presents an innovative approach of utilising visual feedback to determine physical interaction forces with soft tissue during Minimally Invasive Surgery (MIS). This novel force sensing device is composed of a linear retractable mechanism and a spherical visual feature. The sensor mechanism can be adapted to endoscopic cameras used in MIS. As the distance between the camera and feature varies due to the sliding joint, interaction forces with anatomical surfaces can be computed based on the visual appearance of the feature in the image. Hence, this device allows the measurement of forces without introducing new stand-alone sensors. A mathematical model was derived based on validation data tests and preliminary experiments were conducted to verify the models accuracy. Experimental results confirm the effectiveness of our vision based approach.


international conference of the ieee engineering in medicine and biology society | 2014

A continuum body force sensor designed for flexible surgical robotics devices

Yohan Noh; Emanuele Lindo Secco; Sina Sareh; Helge A. Wurdemann; Angela Faragasso; Junghwan Back; Hongbin Liu; Elizabeth Sklar; Kaspar Althoefer

This paper presents a novel three-axis force sensor based on optical photo interrupters and integrated with the robot arm STIFF-FLOP (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations) to measure external interacting forces and torques. The ring-shape bio-compatible sensor presented here embeds the distributed actuation and sensing system of the STIFF-FLOP manipulator and is applicable to the geometry of its structure as well to the structure of any other similar soft robotic manipulator. Design and calibration procedures of the device are introduced: experimental results allow defining a stiffness sensor matrix for real-time estimation of force and torque components and confirm the usefulness of the proposed optical sensing approach.


Smart Materials and Structures | 2014

Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

Min Li; Tommaso Ranzani; Sina Sareh; Lakmal D. Seneviratne; Prokar Dasgupta; Helge A. Wurdemann; Kaspar Althoefer

This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.


international conference on robotics and automation | 2016

Tendon-Based Stiffening for a Pneumatically Actuated Soft Manipulator

Ali Shiva; Agostino Stilli; Yohan Noh; Angela Faragasso; Iris De Falco; Giada Gerboni; Matteo Cianchetti; Arianna Menciassi; Kaspar Althoefer; Helge A. Wurdemann

There is an emerging trend toward soft robotics due to its extended manipulation capabilities compared to traditionally rigid robot links, showing promise for an extended applicability to new areas. However, as a result of the inherent property of soft robotics being less rigid, the ability to control/obtain higher overall stiffness when required is yet to be further explored. In this letter, an innovative design is introduced which allows varying the stiffness of a continuum silicon-based manipulator and proves to have potential for applications in Minimally Invasive Surgery. Inspired by muscular structures occurring in animals such as the octopus, we propose a hybrid and inherently antagonistic actuation scheme. In particular, the octopus makes use of this principle activating two sets of muscles-longitudinal and transverse muscles-thus, being capable of controlling the stiffness of parts of its arm in an antagonistic fashion. Our designed manipulator is pneumatically actuated employing chambers embedded within the robots silicone structure. Tendons incorporated in the structure complement the pneumatic actuation placed inside the manipulators wall to allow variation of overall stiffness. Experiments are carried out by applying an external force in different configurations while changing the stiffness by means of the two actuation mechanisms. Our test results show that dual, antagonistic actuation increases the load bearing capabilities for soft continuum manipulators and thus their range of applications.

Collaboration


Dive into the Helge A. Wurdemann's collaboration.

Top Co-Authors

Avatar

Kaspar Althoefer

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Yohan Noh

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge