Helge Norf
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helge Norf.
Microbial Ecology | 2009
Helge Norf; Hartmut Arndt; Markus Weitere
Four experiments covering different seasons were performed to test the impact of increased benthic and planktonic resource availability on the structure of biofilm-dwelling ciliate communities which were cultivated in river bypass systems. The growth of benthic bacteria was stimulated by the addition of dissolved organic carbon. The enrichment of the planktonic resource was achieved by supplementation with suspended bacteria. It was shown that both resource enrichments can differentially influence abundance and taxonomic structure of ciliate communities. Furthermore, both resources can influence different stages during biofilm colonization. Increased benthic bacterial growth mainly resulted in both an accumulation of primarily grazing-resistant bacterial filaments and in an increase in the number of vagile heterotrophic flagellates. This can stimulate nanophagous ciliates (feeding on flagellates) in addition to the direct stimulation of bacteriovorous ciliates. The effects of the planktonic bacteria enrichments were twofold: They could have been utilized either directly by suspension-feeding ciliates or indirectly through an enhanced growth of suspension-feeding attached heterotrophic flagellates, which were then in turn grazed upon by ciliates. The magnitude of responses of the total ciliate abundance to the two resource enrichments further depended on the background conditions, thereby showing temporarily variable limitations of these resources. Furthermore, the particular taxonomic groups stimulated by one resource type sometimes differed between the experiments, an observation which demonstrates that the response depends on different environmental factors and is not easily predictable based simply on resource type. Taken together, our results emphasize the need of a differentiated view on the effects of resources on complex biofilm-dwelling consumer communities with respect to both the origin of carbon source as well as the particular environmental conditions.
Biofouling | 2009
Helge Norf; Hartmut Arndt; Markus Weitere
Biofilm-dwelling consumer communities play an important role in the matter flux of many aquatic ecosystems. Due to their poor accessibility, little is as yet known about the regulation of natural biofilms. Here, a new type of flow cell is presented which facilitates both experimental manipulation and live observation of natural, pre-grown biofilms. These flow cells were used to study the dynamics of mature ciliate biofilms in response to supplementation of planktonic bacteria. The results suggest that enhanced ciliate productivity could be quickly transferred to micrometazoans (ciliate grazers), making the effects on the standing stock of the ciliates detectable only for a short time. Likewise, no effect on ciliates appeared when micrometazoan consumers were ab initio abundant. This indicates the importance of ‘top-down’ control of natural ciliate biofilms. The flow cells used here offer great potential for experimentally testing such control mechanisms within naturally cultivated biofilms.
Oecologia | 2007
Helge Norf; Hartmut Arndt; Markus Weitere
Indications of global climate change and associated unusual temperature fluctuations have become increasingly obvious over the past few decades. Consequently, the relevance of temperature increases for ecological communities and for whole ecosystems is one of the major challenges of current ecological research. One approach to investigating the effects of increasing temperatures on communities is the use of fast-growing microbial communities. Here we introduce a river bypass system in which we tested the effect of temperature increases (0, 2, 4, 6°C above the long-term average) on both the colonization speed and the carrying capacity of biofilm-associated ciliate communities under different seasonal scenarios. We further investigated interactions of temperature and resource availability by cross-manipulations in order to test the hypothesis that temperature-mediated effects will be strongest in environments that are not resource-limited. Strong seasonal differences in both tested parameters occurred under natural conditions (no resource addition), and the effects of temperature increase at a given time were relatively low. However, increasing temperature can significantly accelerate the colonization speed and reduce the carrying capacity in particular seasons. These effects were strongest in winter. Simultaneous manipulation of temperature and of resource availability amplified the response to temperature increase, adumbrating strong interactive control of populations by temperature and resource availability. Our results show that the response of communities to local temperature increases strongly depends on the seasonal setting, the resource availability and the stage of succession (early colonization speed vs. carrying capacity).
Environmental Earth Sciences | 2017
Ute Wollschläger; Sabine Attinger; Dietrich Borchardt; Mario Brauns; Matthias Cuntz; Peter Dietrich; Jan H. Fleckenstein; Kurt Friese; Jan Friesen; Alexander Harpke; Anke Hildebrandt; Greta Jäckel; Norbert Kamjunke; Kay Knöller; Simon Kögler; Olaf Kolditz; Ronald Krieg; Rohini Kumar; Angela Lausch; Matthias Liess; Andreas Marx; Ralf Merz; Christin Mueller; Andreas Musolff; Helge Norf; Sascha E. Oswald; Corinna Rebmann; Frido Reinstorf; Michael Rode; Karsten Rink
This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.
Oecologia | 2007
Carsten Viergutz; Marcel Kathol; Helge Norf; Hartmut Arndt; Markus Weitere
Climate models predict an increasing frequency of extremely hot summer events in the northern hemisphere for the near future. We hypothesised that microbial grazing by the metazoan macrofauna is an interaction that becomes unbalanced at high temperatures due to the different development of the grazing rates of the metazoans and the growth rates of the microbial community with increasing temperature. In order to test this hypothesis, we performed grazing experiments in which we measured the impact of increasing temperatures on the development of the grazing rates of riverine mussels in relation to the growth rates of a unicellular prey community (a natural heterotrophic flagellate community from a large river). In a first experimental series using Corbicula fluminea as a grazer and under the addition of a carbon source (yeast extract), the increase of the prey’s growth rates was considerably stronger than that of the predator’s grazing rates when temperatures were increased from 19 to over 25°C. This was also the outcome when the mussels had been acclimatized to warm temperatures. Hereafter, specific experiments with natural river water at temperatures of 25 and 30°C were performed. Again, a strong decrease of the mussels’ grazing rates in relation to the flagellate growth rates with increasing temperature occurred for two mussel species (C. fluminea and Dreissena polymorpha). When performing the same experiment using a benthic microbial predator community (biofilms dominated by ciliates) instead of the benthic mussels, an increase of the grazing rates relative to the growth rates with temperature could be observed. Our data suggest that predator–prey interactions (between metazoans and microbes) that are balanced at moderate temperatures could become unbalanced at high temperatures. This could have significant effects on the structure and function of microbial communities in light of the predicted increasing frequency of summer heat waves.
Environmental Science & Technology | 2016
Pedro A. Inostroza; Iván Vera-Escalona; Anna-Jorina Wicht; Martin Krauss; Werner Brack; Helge Norf
Environmental pollution including mutagens from wastewater effluents and discontinuity by man-made barriers are considered typical anthropogenic pressures on microevolutionary processes that are responsible for the loss of biodiversity in aquatic ecosystems. Here, we tested for the effects of wastewater treatment plants (WWTPs), weirs and other stressors on the invertebrate species Gammarus pulex at the population genetic level combining evolutionary ecotoxicology, body burden analysis and testing for exposure to mutagens. Exposure to chemical pollution alone and in combination with the presence of weirs resulted in a depression of allelic richness in native G. pulex populations. Our results suggest that the input of a mutagenic effluent from a WWTP resulted in a strong increase in private alleles over the affected populations. In addition, the presence of weirs along the river disrupted the migration across the river and thus the gene flow between G. pulex upstream and downstream. This study provides strong evidence that the assessment of genetic variation including private alleles together with the contamination of mutagenic and nonmutagenic chemical pollution offers new insights into the regulation of genetic population structure and highlights the relevance of emerging anthropogenic pressures at the genetic level.
Journal of Eukaryotic Microbiology | 2010
Helge Norf; Wilhelm Foissner
ABSTRACT. We discovered a free‐living peritrich ciliate with outstanding features in the River Rhine. Its morphology and 18S rRNA gene sequence were studied with standard methods. Apocarchesium arndti n. sp. has several peculiarities. (i) There are ordinary zooids, macrozooids, and microzooids, which form a hemispherical rosette on a discoidal base, the stalk dish, locking the ∼18 μm wide and up to 2 mm long, spirally contracting colony stalk. (ii) The stalk myoneme is connected only to the microzooids. (iii) A rosette contains up to 50 zooids not connected to each other but individually attached to the stalk dish with the scopula. (iv) The ordinary zooids are epistylidid, trumpet‐shaped (∼6:1 length:width), about 180 × 30 μm in size, and have an ellipsoidal macronucleus subapically between oral cavity and dorsal side. (v) The myoneme system of the zooids, which can contract individually, forms a tube‐like structure in the narrow posterior half of the cell. (vi) The silverline pattern belongs to the transverse‐striate type. (vii) The oral apparatus is of usual structure, with kinety 1 of peniculus 3 distinctly shortened proximally. (viii) The 18S rRNA places A. arndti n. sp. as a distinct lineage near Vorticella and Carchesium. These data are used to provide an improved diagnosis of the genus Apocarchesium. Features (i)–(iii) and the molecular data indicate that Apocarchesium could be the type genus of a new peritrich family.
Ecosphere | 2014
Hanna Marcus; Jennifer K. Wey; Helge Norf; Markus Weitere
Environmental warming can have negative effects on the carrying capacity of communities because metabolic rates increase at the expense of biomass. Here, we tested the hypothesis that such warming effects are reversed in communities experiencing disturbance, as temperature-driven growth processes gain relevance and can compensate for negative disturbance effects. Model communities of semi-natural, biofilm-dwelling ciliates were cultivated in mesocosms (river bypass systems) under two temperature regimes (ambient temperature and increased by 4°C). The interactive effects between these different temperatures and seven disturbance intensities were tested in a nested design. Disturbance generally reduced total ciliate abundances, whereas only small effects on the prevalence of functional diversity were detected. Temperature effects differed between different disturbance intensities and seasons: Whereas warming reduced the carrying capacity of undisturbed communities irrespective of the season, pronounced positive warming effects were detected under disturbance in winter and, to a lesser extent, in spring. Neither significant temperature nor disturbance effects were recorded in summer, probably because ciliate growth rates were not temperature limited due to high summer background temperatures. Our results show that disturbance can markedly alter warming effects on temperature limited communities. Since natural communities commonly face disturbance, it should therefore be considered in models of future environmental warming responses.
Science of The Total Environment | 2017
Ute Risse-Buhl; Clara Mendoza-Lera; Helge Norf; Javier Pérez; Jesús Pozo; Jeanette Schlief
Input of allochthonous leaf litter is the main carbon source for heterotrophic metabolism in low-order forested streams. A major part of this leaf litter is accumulated at benthic retention structures or buried in the hyporheic zone. As a result of hyporheic sediment characteristics, hyporheic physicochemistry differs from that of the benthic zone selecting the microbial community. The present study aimed at understanding the influence of the hydrological and physiochemical differences between the benthic and hyporheic zone on microbial leaf litter decomposition and on the structure and function of the associated microbial community. Leached leaves of Alnus glutinosa were exposed for 62days in 250-μm mesh bags in the benthic zone and buried in the hyporheic zone at a depth of 2-3cm. Decomposition rates were comparable for both zones. In contrast, respiration, bacterial abundance, ergosterol content, fungal spore production and richness of fungal morphotypes were lower associated with hyporheic than with benthic leaves. Microbial community structure displayed zone-dependent temporal dynamics. Thus, the microbial community carried out leaf litter decomposition independently of its structure. These results suggest that carbon processing is not necessarily impaired by environmental constraints because the community structure may compensate those constraints (i.e. functional redundancy).
Environmental Science & Technology | 2018
Pedro A. Inostroza; Iván Vera-Escalona; Romy Wild; Helge Norf; Mario Brauns
Agricultural and urban land use has dramatically increased over the last century and one consequence is the release of anthropogenic chemicals into aquatic ecosystems. One of the rarely studied consequences is the effect of land use change on internal concentrations of organic micropollutants (OMPs) in aquatic invertebrates and its effects on their genotype diversity. Here, we applied population genetic and internal concentrations of OMPs analyses to determine evolutionary implications of chemical pollution on Gammarus pulex populations from a natural and two agricultural streams. Along 14 consecutive months sampled, 26 different OMPs were quantified in G. pulex extracts with the highest number, concentration, and toxic pressure in the anthropogenically stressed stream ecosystems. Our results indicate distinct internal OMP profiles and changes in both genetic variation and genetic structure in streams affected by anthropogenic activity. Genetic variation was attributed to chemical pollution whereas changes in the genetic structure were attributed to environmental disturbances, such as changes in discharge in the impacted stream ecosystems, which worked both independently and in tandem. Finally, we conclude that human-impacted streams are subjected to severe alterations in their population genetic patterns compared to nonimpacted stream ecosystems.