Heli Wei
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heli Wei.
Applied Optics | 2005
Ping Yang; Heli Wei; Hung-Lung Huang; Bryan A. Baum; Yong X. Hu; George W. Kattawar; Michael I. Mishchenko; Qiang Fu
The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.
IEEE Transactions on Geoscience and Remote Sensing | 2004
Heli Wei; Ping Yang; Jun Li; Bryan A. Baum; Hung-Lung Huang; Steven Platnick; Yongxiang Hu; L. Larrabee Strow
An approach is developed to infer the optical thickness of semitransparent ice clouds (when optical thickness is less than 5) from Atmospheric Infrared Sounder (AIRS) high spectral resolution radiances. A fast cloud radiance model is developed and coupled with an AIRS clear-sky radiative transfer model for simulating AIRS radiances when ice clouds are present. Compared with more accurate calculations based on the discrete ordinates radiative transfer model, the accuracy of the fast cloud radiance model is within 0.5 K (root mean square) in terms of brightness temperature (BT) and runs three orders of magnitude faster. We investigate the sensitivity of AIRS spectral BTs and brightness temperature difference (BTD) values between pairs of wavenumbers to the cloud optical thickness. The spectral BTs for the atmospheric window channels within the region 1070-1135 cm/sup -1/ are sensitive to the ice cloud optical thickness, as is the BTD between 900.562 cm/sup -1/ (located in an atmospheric window) and 1558.692 cm/sup -1/ (located in a strong water vapor absorption band). Similarly, the BTD between a moderate absorption channel (1587.495 cm/sup -1/) and the strong water absorption channel (1558.692 cm/sup -1/) is sensitive to ice cloud optical thickness. Neither of the aforementioned BTDs is sensitive to the effective particle size. Thus, the optical thickness of semitransparent ice clouds can be retrieved reliably. We have developed a spectrum-based approach and a BTD-based method to retrieve the optical thickness of semitransparent ice clouds. The present retrieval methods are applied to a granule of AIRS data. The ice cloud optical thicknesses derived from the AIRS measurements are compared with those retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) 1.38and 0.645-/spl mu/m bands. The optical thicknesses inferred from the MODIS measurements are collocated and degraded to the AIRS spatial resolution. Results from the MODIS and AIRS retrievals are in reasonable agreement over a wide range of optical thicknesses.
IEEE Transactions on Geoscience and Remote Sensing | 2004
Hung-Lung Huang; Ping Yang; Heli Wei; Bryan A. Baum; Yongxiang Hu; Paolo Antonelli; Steven A. Ackerman
The theoretical basis is explored for inferring the microphysical properties of ice clouds from high spectral resolution infrared (IR) observations. Extensive radiative transfer simulations are carried out to address relevant issues. The single-scattering properties of individual ice crystals are computed from state-of-the-art light scattering computational methods and are subsequently averaged for 30 in situ particle size distributions and for four additional analytical Gamma size distributions. The nonsphericity of ice crystals is shown to have a significant impact on the radiative signatures in the IR spectrum. Furthermore, the errors associated with the use of the Henyey-Greenstein phase function can be larger than 1 K in terms of brightness temperature for large particle effective sizes (/spl sim/80 /spl mu/m) at wavenumbers where the scattering of the IR radiation by ice crystals is not negligible. The simulations undertaken in this paper show that the slope of the IR brightness temperature spectrum between 790-960 cm/sup -1/ is sensitive to the effective particle size. Furthermore, a strong sensitivity of the IR brightness temperature to cloud optical thickness is noted within the 1050-1250-cm/sup -1/ region. Based on these spectral features, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution IR data for ice clouds. An error analysis shows that the uncertainties of the retrieved optical thickness and effective particle size have a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding errors in the uncertainty of optical thickness are within 5% to 20%, depending on the value of cloud optical thickness. The applicability of the present retrieval technique is demonstrated using airborne high-resolution IR measurements obtained during two field campaigns.
Journal of Applied Meteorology | 2005
Jun Li; Hung-Lung Huang; Chian-Yi Liu; Ping Yang; Timothy J. Schmit; Heli Wei; Elisabeth Weisz; Li Guan; W. Paul Menzel
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the NASA Earth Observing System Aqua satellite enable global monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1–5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP), and effective cloud amount during both the daytime and the nighttime, as well as cloud particle size (CPS) and cloud optical thickness (COT) at 0.55 m during the daytime. The AIRS high-spectral-resolution measurements reveal cloud properties with coarser spatial resolution (13.5 km at nadir). Combined, MODIS and AIRS provide cloud microphysical properties during both the daytime and nighttime. A fast cloudy radiative transfer model for AIRS that accounts for cloud scattering and absorption is described in this paper. Onedimensional variational (1DVAR) and minimum-residual (MR) methods are used to retrieve the CPS and COT from AIRS longwave window region (790–970 cm 1 or 10.31–12.66 m, and 1050–1130 cm 1 or 8.85–9.52 m) cloudy radiance measurements. In both 1DVAR and MR procedures, the CTP is derived from the AIRS radiances of carbon dioxide channels while the cloud-phase information is derived from the collocated MODIS 1-km phase mask for AIRS CPS and COT retrievals. In addition, the collocated 1-km MODIS cloud mask refines the AIRS cloud detection in both 1DVAR and MR procedures. The atmospheric temperature profile, moisture profile, and surface skin temperature used in the AIRS cloud retrieval processing are from the European Centre for Medium-Range Weather Forecasts forecast analysis. The results from 1DVAR are compared with the operational MODIS products and MR cloud microphysical property retrieval. A Hurricane Isabel case study shows that 1DVAR retrievals have a high correlation with either the operational MODIS cloud products or MR cloud property retrievals. 1DVAR provides an efficient way for cloud microphysical property retrieval during the daytime, and MR provides the cloud microphysical property retrievals during both the daytime and nighttime.
Journal of Geophysical Research | 2003
Ping Yang; Martin G. Mlynczak; Heli Wei; David P. Kratz; Bryan A. Baum; Yong X. Hu; Warren J. Wiscombe; Andrew K. Heidinger; Michael I. Mishchenko
(extinction efficiency, absorption efficiency, and the asymmetry factor of the scattering phase function) are calculated for small particles using circular cylinders and for large crystals using hexagonal columns. The scattering properties are computed for particle sizes over a size range from 1 to 10,000 mm in maximum dimension from a combination of the T-matrix method, the Lorenz-Mie theory, and an improved geometric optics method. Bulk scattering properties are derived subsequently for 30 particle size distributions, with effective particle sizes ranging from 15 to 150 mm, obtained from various field campaigns for midlatitude and tropical cirrus clouds. Furthermore, a parameterization of the bulk scattering properties is developed. The radiative properties of ice clouds and the clear-sky optical thickness computed from the line-by-line method are input to a radiative transfer model to simulate the upwelling spectral radiance in the far-IR spectral region at the research aircraft height (20 km). On the basis of the simulations, we investigate the sensitivity of far-IR spectra to ice cloud optical thickness and effective particle size. The brightness temperature difference (BTD) between 250 and 559.5 cm � 1 is shown to be sensitive to optical thickness for optically thin clouds (visible optical thickness t 8), the BTD between 250 and 410.2 cm � 1 is shown to be sensitive to the effective particle size up to a limit of 100 mm. INDEX TERMS: 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; 0649 Electromagnetics: Optics; KEYWORDS: far-infrared, cirrus cloud, ice crystal
Applied Optics | 2003
Ping Yang; Heli Wei; George W. Kattawar; Yong X. Hu; David M. Winker; Chris A. Hostetler; Bryan A. Baum
The Mueller matrix (M) corresponding to the phase matrix in the backscattering region (scattering angles ranging from 175 degrees to 180 degrees) is investigated for light scattering at a 0.532-microm wavelength by hexagonal ice crystals, ice spheres, and water droplets. For hexagonal ice crystals we assume three aspect ratios (plates, compact columns, and columns). It is shown that the contour patterns of the backscattering Mueller matrix elements other than M11, M44, M14, and M41 depend on particle geometry; M22 and M33 are particularly sensitive to the aspect ratio of ice crystals. The Mueller matrix for spherical ice particles is different from those for nonspherical ice particles. In addition to discriminating between spherical and nonspherical particles, the Mueller matrix may offer some insight as to cloud thermodynamic phase. The contour patterns for large ice spheres with an effective size of 100 microm are substantially different from those associated with small water droplets with an effective size of 4 microm.
Journal of Quantitative Spectroscopy & Radiative Transfer | 2003
Ping Yang; Heli Wei; Bryan A. Baum; Hung-Lung Huang; Andrew J. Heymsfield; Yong X. Hu; Bo-Cai Gao; David D. Turner
Abstract An outstanding problem facing the cloud modeling and remote sensing community is to improve satellite-derived cloud microphysical and macrophysical properties when a single cloud layer exists within a temperature range for which a combination of water and ice particles may be present. This is typically known as a “mixed-phase” cloud condition, and is prevalent when the cloud-top temperature lies between −40°C and 0°C. In this paper we report on a sensitivity study of the spectral signature of mixed-phase clouds in the infrared terrestrial window region (8– 13 μm ). Mixed clouds are assumed to be a vertically uniform cloud layer composed of a mixture of pristine hexagonal ice crystals and spherical water droplets. Unlike the conventional approach that derives the bulk scattering properties of mixed-phase clouds by a linear weighting of the contributions of ice and water components, the bulk single-scattering properties of mixed-phase clouds are formulated on the basis of fundamental physics. With the aid of a line-by-line radiative transfer model and a discrete ordinates radiative transfer (DISORT) computational program, we investigate the high-resolution spectral signature, expressed in terms of brightness temperature, of mixed-phase clouds with various effective sizes, ice fraction ratios, and optical thicknesses. Small particles are found to have a significant impact on the infrared spectral signature of mixed-phase clouds when the size discrepancy between the ice and water particles is large. Furthermore, the simulation results show that the infrared radiative spectrum associated with cirrus clouds can be quite different from their counterparts for cirrus clouds even if a small amount of water droplets exist in the mixed-phase cloud layer.
Journal of Climate | 2013
Xianglei Huang; Norman G. Loeb; Heli Wei
AbstractThe far-IR spectrum plays an important role in the earth’s radiation budget and remote sensing. The authors compare the near-global (80°S–80°N) outgoing clear-sky far-IR flux inferred from the collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations in 2004 with the counterparts computed from reanalysis datasets subsampled along the same satellite trajectories. The three most recent reanalyses are examined: the ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern-Era Retrospective Analysis for Research and Application (MERRA), and NOAA/NCEP Climate Forecast System Reanalysis (CFSR). Following a previous study by X. Huang et al., clear-sky spectral angular distribution models (ADMs) are developed for five of the CERES land surface scene types as well as for the extratropical oceans. The outgoing longwave radiation (OLR) directly estimated from the AIRS radiances using the authors’ algorithm agrees well with the OLR in the collocated CERES ...
Optics Express | 2007
Heli Wei; Ruizhong Rao; Yingjian Wang; Ping Yang
A fast narrowband transmittance model, referred to as the Fast Fitting Transmittance Model (FFTM), is developed based on rigorous line-by- line (LBL) calculations. Specifically, monochromatic transmittances are first computed from a LBL model in a spectral region from 1 to 25000 cm(-1) for various pressures and temperatures ranging from 0.05 hPa to 1100 hPa and from 200 K to 320 K, respectively. Subsequently, the monochromatic transmittances are averaged over a spectral interval of 1 cm(-1) to obtain narrowband transmittances that are then fitted to various values of absorber amount. A database of fitting coefficients is then created that can be used to compute narrowband transmittances for an arbitrary atmospheric profile. To apply the FFTM to an inhomogeneous atmosphere, the Curtis-Godson (CG) approximation is employed to obtain the weighted effective coefficients. The present method is validated against the LBLRTM and also compared with the high-spectral-resolution measurements acquired by the Atmospheric Infrared Sounder (AIRS) and High-resolution Interferometer Sounder (HIS). With a spectral resolution of 1 cm(-1) and a wide spectral coverage, the FFTM offers a unique combination of numerical efficiency and considerable accuracy for computing moderate- to high-spectral-resolution transmittances involved in radiative transfer simulations and remote sensing applications.
IEEE Geoscience and Remote Sensing Letters | 2005
Ping Yang; Si-Chee Tsay; Heli Wei; Guang Guo; Qiang Ji
The surface radiance spectrum within the terrestrial infrared window (i.e., wavelengths between 8-12 /spl mu/m or wavenumbers between 833-1250 cm/sup -1/) is sensitive to the optical and microphysical properties of cirrus clouds. Numerous microwindows where atmospheric absorption is minimum exist in the spectral regions of 820-960 cm/sup -1/ and 1100-1240 cm/sup -1/. The minimum radiances at the microwindows in these two spectral regions can be fitted by using two linear lines. The slope of the fitting line for the spectral region of 820-960 cm/sup -1/ is sensitive to the effective size of ice crystals within cirrus clouds, whereas the intercept of the fitting line for the spectral region of 1100-1240 cm/sup -1/ is sensitive to the optical thickness of the clouds. Based on this spectral feature, a new retrieval method has been developed for simultaneously retrieving cirrus optical thickness and the effective particle size of ice crystals. Furthermore, the ice water path of cirrus clouds can be estimated from the retrieved values of cloud optical thickness and effective particle size.