Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hélio Chiarini-Garcia is active.

Publication


Featured researches published by Hélio Chiarini-Garcia.


General and Comparative Endocrinology | 2010

Spermatogenesis in fish.

Rüdiger W. Schulz; Luiz R. França; Jean-Jacques Lareyre; Florence LeGac; Hélio Chiarini-Garcia; Rafael H. Nóbrega; Takeshi Miura

Spermatogenesis is a developmental process during which a small number of diploid spermatogonial stem cells produce a large number of highly differentiated spermatozoa carrying a haploid, recombined genome. We characterise morphologically the different germ cell stages with particular attention for the spermatogonial generations, including the stem cells and their specific capacity to colonise a recipients testis after transplantation. We propose a nomenclature for fish germ cells to improve the comparability among different teleost fish but also to higher vertebrates. Survival and development of germ cells depends on their continuous and close contact to Sertoli cells, and we review their multiple roles in the cystic mode of spermatogenesis seen in fish. We then discuss gene expression patterns associated with testis maturation. The endocrine system of vertebrates has evolved as master control system over spermatogenesis. In fish, both pituitary gonadotropins LH and FSH stimulate gonadal sex steroid hormone production directly by activating Leydig cells. Information is reviewed on the effects of progestin, androgens, and estrogens on global testicular gene expression patterns (microarray analysis), and on the molecular mechanisms by which steroids regulate specific candidate genes (identified by subtractive hybridization approaches) during early stages of testis maturation. Moreover, progestin and androgen effects on spermiation and milt hydration are discussed. Sex steroids mainly act via receptors expressed by Sertoli cells. One type of response is that Sertoli cells change growth factor expression, which subsequently modulates germ cell proliferation/differentiation via mechanisms yet to be characterised. Finally, we review data on germ cell autonomous processes, mainly derived from loss-of-function mutant fish lines, before identifying a number of focus areas for future research activities.


Biology of Reproduction | 2000

Cell Proliferation and Hormonal Changes During Postnatal Development of the Testis in the Pig

Luiz R. França; Valdemiro A. Silva; Hélio Chiarini-Garcia; Simone K. Garcia; Luciano Debeljuk

Abstract Histometrical evaluation of the testis was performed in 36 Piau pigs from birth to 16 mo of age to investigate Sertoli cell, Leydig cell, and germ cell proliferation. In addition, blood samples were taken in seven animals from 1 wk of age to adulthood to measure plasma levels of FSH and testosterone. Sertoli cell proliferation in pigs shows two distinct phases. The first occurs between birth and 1 mo of age, when the number of Sertoli cells per testis increases approximately sixfold. The second occurs between 3 and 4 mo of age, or just before puberty, which occurs between 4 to 5 mo of age, when Sertoli cells almost double their numbers per testis. The periods of Sertoli cell proliferation were concomitant with high FSH plasma levels and prominent elongation in the length of seminiferous cord/tubule per testis. Leydig cell volume increased markedly from birth to 1 mo of age and just before puberty. In general, during the first 5 mo after birth, Leydig cell volume growth showed a similar pattern as that observed for testosterone plasma levels. Also, the proliferation of Leydig cells per testis before puberty showed a pattern similar to that observed for Sertoli cells. However, Leydig cell number per testis increased up to 16 mo of age. Substantial changes in Leydig cell size were also observed after the pubertal period. From birth to 4 mo of age, germ cells proliferated continuously, increasing their number approximately two- to fourfold at each monthly interval. A dramatic increase in germ cells per cross-section of seminiferous tubule was observed from 4 to 5 mo of age; their number per tubule cross-section stabilized after 8 mo. To our knowledge, this is the first longitudinal study reporting the pattern of Sertoli cell, germ cell, and Leydig cell proliferative activity in pigs from birth to adulthood and the first study to correlate these events with plasma levels of FSH and testosterone.


Reproduction | 2011

Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach

Ana Luiza Drumond; Marvin L. Meistrich; Hélio Chiarini-Garcia

Despite the knowledge of spermatogonial biology in adult mice, spermatogonial development in immature animals has not been fully characterized. Thus, the aim of this study was to evaluate the ontogeny of the morphological development of the spermatogonial lineage in C57BL/6 mouse testis, using high-resolution light microscopy. Spermatogonial morphology, chronology, and absolute number were determined for different ages postpartum (pp). The morphology of spermatogonia in immature mice was similar to that of adult spermatogonia, although their nuclear diameter was slightly smaller. The A(1) spermatogonia were first observed on day 2 pp, and only 24 h later, differentiating type A(3) and A(4) spermatogonia were observed in the seminiferous cords. This result indicated a shortening of the spermatogonial phase for immature mice of about ∼2.5 days when compared with adult mice and suggests that gonocytes and/or A(1) spermatogonia could directly become A(4) spermatogonia, skipping the developmental sequence of type A spermatogonia. These A(4) spermatogonia are functional as they develop into type B spermatogonia by day 5 pp. At day 8 pp, while differentiation to spermatocytes begins, the A(und) spermatogonia reach their maximal numbers, which are maintained through adulthood. The various details of the spermatogonial behavior in immature normal mice described in this study can be used as a baseline for further studies under experimental or pathological conditions.


Biology of Reproduction | 2002

Comparative Testis Morphometry and Seminiferous Epithelium Cycle Length in Donkeys and Mules

Elizabeth S. Neves; Hélio Chiarini-Garcia; Luiz R. França

Abstract The mule (Equus mulus mulus) is a sterile hybrid domestic animal that results from the breeding of a male donkey (Equus asinus) to a female horse (Equus caballus). Usually, spermatogenesis in mules does not advance beyond spermatocytes. In the present study, we performed a comparative and more accurate morphometric and functional investigation of the testis in donkeys and mules. Due to the smaller testis size, lower seminiferous tubule volume density, and fewer germ cells, the total length of seminiferous tubules in mules was significantly smaller than in donkeys. However, the percentage of seminiferous tubules containing germ cells (spermatogonia and spermatocytes) in mules was approximately 95%. The total number of Sertoli cells per testis observed in donkeys and mules was very similar. However, the total number of Leydig cells in mules was approximately 70% lower than in donkeys. At least in part, this difference was probably related to the lower number of germ cells present in mule seminiferous tubules. Although spermatogenesis in mules did not advance beyond secondary spermatocytes/newly formed round spermatids, germ cell associations in the seminiferous epithelium and pachytene spermatocytes nuclear volume in donkeys and mules were similar. The duration of spermatogenesis was estimated using intratesticular injections of tritiated thymidine. Each spermatogenic cycle in donkeys lasted 10.5 days. A similar value was found in mules (∼10.1 days). Considering that the entire spermatogenic process takes approximately 4.5 cycles to be completed, its total duration in donkeys was estimated to last 47.2 days. The results found for mules suggest that the mechanisms involved in the determination of testis structure and function are probably originated from donkeys. Also, the data found for mules suggest that their seminiferous tubules are able to sustain complete spermatogenesis. In this regard, this species is a potential model for transplants of germ cells originated from donkeys and horses or other large animals.


Reproduction, Fertility and Development | 2012

Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits.

A. L. N. Alvarenga; Hélio Chiarini-Garcia; P. C. Cardeal; L. P. Moreira; G. R. Foxcroft; D. O. Fontes; F. R. C. L. Almeida

The present study investigated the occurrence of intra-uterine growth retardation (IUGR) in newborn (n=40) and 150-day-old (n=240) pigs of different birthweight ranges (high, HW: 1.8-2.2kg; low, LW: 0.8-1.2kg) from higher-parity commercial sows and its impact on their subsequent development and carcass traits in a Brazilian commercial production system. HW newborn pigs had heavier organs than LW pigs (P<0.01), and all brain:organ weight ratios were higher (P<0.01) in LW compared with HW offspring, providing strong evidence of IUGR in the LW piglets. HW pigs had higher bodyweights and average daily gain (ADG) in all phases of production (P<0.05), but ADG in the finisher phase was similar in both groups. Additionally, LW newborn and 150-day-old pigs showed a lower percentage of muscle fibres and a higher percentage of connective tissue in the semitendinosus muscle, greater fibre number per mm(2) and a lower height of the duodenal mucosa (P<0.05). On the other hand, HW pigs had higher hot carcass weight, meat content in the carcass and yield of ham, shoulder and belly (P<0.01). Hence, lower-birthweight piglets may suffer from IUGR, which impairs their growth performance, muscle accretion, duodenal mucosa morphology and carcass traits.


Journal of Endocrinology | 2007

Type 2 iodothyronine deiodinase is highly expressed in germ cells of adult rat testis

Simone Magagnin Wajner; Márcia dos Santos Wagner; Rossana C. N. Melo; Gleydes G. Parreira; Hélio Chiarini-Garcia; Antonio C. Bianco; Csaba Fekete; Edith Sánchez; Ronald M. Lechan; Ana Luiza Maia

The testis has been classically described as a thyroid hormone unresponsive tissue, but recent studies indicate that these hormones might play an important role in developing testes. We have previously demonstrated that type 2 iodothyronine deiodinase (D2), a thyroid hormone-activating enzyme, is expressed in adult rodent testis and that its activity is induced by hypothyroidism. Nevertheless, the precise location of D2 in testis is not known. The aim of the present work was to determine the testicular cell types in which D2 is expressed using real-time PCR analysis, in situ hybridization histochemistry, and determination of D2 activity in cell fractions isolated from adult euthyroid and/or hypothyroid rat testis. The D2 mRNA levels in germ cells were higher than those from somatic cells (6.94 +/- 1.49 vs 2.32 +/- 0.79 arbitrary units (au); P = 0.017). Hypothyroidism increased D2 expression in germ cells (6.94 +/- 1.49 vs 8.78 +/- 5.43 au, P = 0.002) but did not change D2 transcripts in somatic cells significantly (2.12 +/- 0.79 vs 2.88 +/- 1.39 au, P = 0.50). In situ hybridization analysis showed that D2 mRNA is specifically present in elongated spermatids undergoing differentiation, whereas other germ cell types and Sertoli cells of seminiferous epithelium and the interstitial cells were virtually negative for this enzyme. The enzyme activity measured in germ and somatic isolated cell fractions (0.23 +/- 0.003 vs 0.02 +/- 0.013 fmol/min per mg protein respectively; P < 0.001) further confirmed the real-time PCR and in situ hybridization results. Hence, our findings demonstrated that D2 is predominantly expressed in elongated spermatids, suggesting that thyroid hormone might have a direct effect on spermatogenesis in the adult rats.


Cell and Tissue Research | 2011

Functional dissimilarity of melanomacrophage centres in the liver and spleen from females of the teleost fish Prochilodus argenteus

H. J. Ribeiro; Marcela Santos Procópio; Juliana M.M. Gomes; F. O. Vieira; Remo Castro Russo; K. Balzuweit; Hélio Chiarini-Garcia; Antônio Carlos Santana Castro; Elizete Rizzo; José Dias Corrêa

Melanomacrophage centres (MMCs) are formed by macrophage aggregates containing pigments such as hemosiderin, melanin and lipofuscin. MMCs are found in animals such as reptiles, amphibians and, mainly, fishes, in organs such as the kidney, spleen, thymus and liver. In teleost fish, several functions have been attributed to MMCs, including the capture and storage of cations, the phagocytosis of cellular debris and immunological reactions. As the use of MMCs has been suggested as a tool for the assessment of environmental impacts, our aim has been to describe the various metabolic processes performed by MMCs in diverse organs (liver and spleen) by using the teleost Prochilodus argenteus as an animal model. MMCs from the liver and spleen were assessed by histochemistry, transmission electron microscopy, scanning electron microscopy, X-ray microanalysis techniques and biochemical assay for N-acetylglucosaminidase activity. The data showed metabolic differences in MMCs between the liver and spleen of P. argenteus in their morphometric characteristics and biochemical and elemental composition. The implications of these findings are discussed, focusing on their role in organ metabolism.


Animal | 2013

Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig.

M. N. Smit; Joel D. Spencer; F. R. C. L. Almeida; Jennifer Patterson; Hélio Chiarini-Garcia; Michael K. Dyck; G. R. Foxcroft

The consequences of a low litter average birth weight phenotype for postnatal growth performance and carcass quality of all progeny, and testicular development in male offspring, were investigated. Using data from 25 sows with one, and 223 sows with two consecutive farrowing events, individual birth weight (BW) was measured and each litter between 9 and 16 total pigs born was classified as low (LBW), medium (MBW) or high (HBW) birth weight: low and high BW being defined as >1 standard deviation below or above, respectively, the population mean for each litter size. Litter average BW was repeatable within sows. At castration, testicular tissue was collected from 40 male pigs in LBW and HBW litters with individual BW close to their litter average BW and used for histomorphometric analysis. LBW piglets had a lower absolute number of germ cells, Sertoli cells and Leydig cells in their testes and a higher brain : testis weight ratio than HBW piglets. Overall, LBW litters had lower placental weight and higher brain : liver, brain : intestine and brain : Semitendinosus muscle weight ratios than MBW and HBW litters. In the nursery and grow-finish (GF) phase, pigs were kept in pens by BW classification (9 HBW, 17 MBW and 10 LBW pens) with 13 males and 13 females per pen. Average daily gain tended to be lower in LBW than HBW litters in lactation (P = 0.06) and throughout the nursery and GF phases (P < 0.01), resulting in an increasing difference in body weight between LBW, MBW and HBW litters (P < 0.05). Average daily feed intake was lower (P < 0.001) in LBW than HBW litters in the nursery and GF phases. Feed utilization efficiency (feed/gain) was similar for LBW and HBW litters in the nursery, but was lower (P < 0.001) in HBW than LBW litters in the GF phase. By design, slaughter weight was similar between BW classifications; however, LBW litters needed 9 more days to reach the same slaughter weight than HBW litters (P < 0.001). BW classification did not affect carcass composition traits. In conclusion, LBW litters showed benchmarks of intrauterine growth retardation, LBW had a negative impact on testicular development and germ and somatic cell populations, and was associated with decreased postnatal growth during all phases of production; however, no measurable effect on carcass composition traits was established.


Biology of Reproduction | 2007

Genetic Factors Contributing to Defective Spermatogonial Differentiation in Juvenile Spermatogonial Depletion (Utp14bjsd) Mice

Olga Bolden-Tiller; Hélio Chiarini-Garcia; Christophe Poirier; Daniel Alves-Freitas; Connie C. Weng; Gunapala Shetty; Marvin L. Meistrich

Abstract Male mice that are homozygous for the juvenile spermatogonial depletion (jsd) mutation in the Utp14b gene undergo several waves of spermatogenesis. However, spermatogonial differentiation ceases and in adults, spermatogonia are the only germ cells that remain. To understand further the blockage in spermatogonial differentiation in Utp14bjsd mutant mice, we correlated the rate and severity of spermatogonial depletion and the restoration of spermatogenesis following the suppression of testosterone or elevation of testicular temperature with the genetic background. Testes from Utp14bjsd mutant mice on B6, C3H, and mixed C3H-B6–129 (HB129) genetic backgrounds all showed steady decreases in the numbers of normal spermatogonia between 8 wk and 20 wk of age. The percentages of tubules with differentiating germ cells were higher and the spermatogonia were more advanced in C3H- background than in B6- or HB129-background Utp14bjsd mice. Genetic crosses showed that the source of the Y chromosome was a major factor in determining the severity of spermatogonial depletion in Utp14bjsd mutant mice. When Utp14bjsd mutants were subjected to total androgen ablation or unilateral cryptorchidization, spermatogenic development recovered markedly in the C3H and HB129 background but showed less recovery in the B6-background mice. The differences noted between the strains in terms of the severity of spermatogonial depletion were not dependent upon testosterone level or scrotal temperature but correlated with the magnitudes of the effects of elevated temperature on normal and Utp14bjsd mutant spermatogenic cells. Thus, the abilities of germ cells in certain strains to survive elevated temperatures may be related to their abilities to maintain some degree of differentiation potential after the Utp14bjsd gene is mutated.


International Journal of Andrology | 2009

Spermatogonial morphology, kinetics and niches in hamsters exposed to short- and long-photoperiod

H. F. Do Nascimento; A. L. Drumond; L.R. de França; Hélio Chiarini-Garcia

Previous studies have shown that under short photoperiod exposure spermatogenesis in golden hamster regresses leading to sexual inactivity. It is known that this regression is related to changes in somatic and germ cells (spermatocytes and spermatids). However, the photoperiod effects on spermatogonial biology have not been studied in detail yet. In this regard, this study was carried out to investigate the morphology, kinetics and niches of different spermatogonial types in golden hamsters under long- and short-photoperiod. Six spermatogonial generations such as type A undifferentiated (A(und)), type A differentiating (A(1), A(2), A(3)), intermediate (In) and type B spermatogonia were characterized, and were morphologically similar irrespective of the photoperiod exposure. The short photoperiod was inhibitory to A(und) spermatogonia and preleptotene but had no effect on the number of differentiating (A(1) to B) spermatogonia. In golden hamsters exposed to stimulatory-photoperiod, the interstitial components were positioned mainly in triangular areas around the seminiferous tubules and, in this situation, the A(und) spermatogonia were clearly positioned in niches (p < 0.05) in all stages studied. On the other hand, during the inhibitory-photoperiod where the seminiferous tubules have smaller diameter, the interstitial components were more homogenously distributed and the triangular areas were not clearly observed. In this case, the niches were identified only at stage VII (p < 0.05), although there was a trend of being positioned in niches area in all the stages studied. Thus, these findings suggest that the A(und) spermatogonia location in the seminiferous epithelium and the niche position are directly related to the position of the interstitial components.

Collaboration


Dive into the Hélio Chiarini-Garcia's collaboration.

Top Co-Authors

Avatar

F. R. C. L. Almeida

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Rossana C. N. Melo

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar

Gleydes G. Parreira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Marvin L. Meistrich

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Luiz R. França

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Conceição R.S. Machado

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daniel Alves-Freitas

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

F. Nihi

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Fábio Roland

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar

Natália P. Noyma

Universidade Federal de Juiz de Fora

View shared research outputs
Researchain Logo
Decentralizing Knowledge