Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hellmut G. Augustin is active.

Publication


Featured researches published by Hellmut G. Augustin.


Nature Reviews Molecular Cell Biology | 2009

Control of vascular morphogenesis and homeostasis through the angiopoietin - Tie system

Hellmut G. Augustin; Gou Young Koh; Gavin Thurston; Kari Alitalo

Angiogenesis, the growth of blood vessels, is a fundamental biological process that controls embryonic development and is also involved in numerous life-threatening human diseases. Much work in the field of angiogenesis research has centred on the vascular endothelial growth factor (VEGF)–VEGF receptor system. The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system. Ang–Tie signalling is essential during embryonic vessel assembly and maturation, and functions as a key regulator of adult vascular homeostasis. The structural characteristics and the spatio-temporal regulation of the expression of receptors and ligands provide unique insights into the functions of this vascular signalling system.


Nature Medicine | 2006

Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation

Ulrike Fiedler; Yvonne Reiss; Marion Scharpfenecker; Verena Grunow; Stefanie Koidl; Gavin Thurston; Nicholas W. Gale; Martin Witzenrath; Simone Rosseau; Norbert Suttorp; Astrid Sobke; Matthias Herrmann; Klaus T. Preissner; Peter Vajkoczy; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.


The EMBO Journal | 1999

A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases

Marlene Meyer; Matthias Clauss; Albrecht Lepple-Wienhues; Johannes Waltenberger; Hellmut G. Augustin; Marina Ziche; Christa Lanz; Mathias Büttner; Hanns Joachim Rziha; Christoph Dehio

The different members of the vascular endothelial growth factor (VEGF) family act as key regulators of endothelial cell function controlling vasculogenesis, angiogenesis, vascular permeability and endothelial cell survival. In this study, we have functionally characterized a novel member of the VEGF family, designated VEGF‐E. VEGF‐E sequences are encoded by the parapoxvirus Orf virus (OV). They carry the characteristic cysteine knot motif present in all mammalian VEGFs, while forming a microheterogenic group distinct from previously described members of this family. VEGF‐E was expressed as the native protein in mammalian cells or as a recombinant protein in Escherichia coli and was shown to act as a heat‐stable, secreted dimer. VEGF‐E and VEGF‐A were found to possess similar bioactivities, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo. Like VEGF‐A, VEGF‐E was found to bind with high affinity to VEGF receptor‐2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentration, whilst in contrast to VEGF‐A, VEGF‐E did not bind to VEGF receptor‐1 (Flt‐1). VEGF‐E is thus a potent angiogenic factor selectively binding to VEGF receptor‐2. These data strongly indicate that activation of VEGF receptor‐2 alone can efficiently stimulate angiogenesis.


The FASEB Journal | 2001

Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness

Thomas Korff; Sarah Kimmina; Georg Martiny-Baron; Hellmut G. Augustin

Paracrine interactions between endothelial cells (EC) and mural cells act as critical regulators of vessel wall assembly, vessel maturation and define a plasticity window for vascular remodeling. The present study was aimed at studying blood vessel maturation processes in a novel 3‐dimensional spheroidal coculture system of EC and smooth muscle cells (SMC). Coculture spheroids differentiate spontaneously in a calciumdependent manner to organize into a core of SMC and a surface layer of EC, thus mimicking the physiological assembly of blood vessels with surface lining EC and underlying mural cells. Coculture of EC with SMC induces a mature, quiescent EC phenotype as evidenced by 1) a significant increase in the number of junctional complexes of the EC surface layer, 2) a down‐regulation of PDGF‐B expression by cocultured EC, and 3) an increased resistance of EC to undergo apoptosis. Furthermore, EC cocultured with SMC become refractory to stimulation with VEGF (lack of CD34 expression on VEGF stimulation;inability to form capillary‐like sprouts in a VEGF‐dependent manner in a 3‐dimensional in gel angiogenesis assay). In contrast, costimulation with VEGF and Ang‐2 induced sprouting angiogenesis originating from coculture spheroids consistent with a model of Ang‐2‐mediated vessel destabilization resulting in VEGF responsiveness. Ang‐2 on its own was able to stimulate endothelial cells in the absence of Ang‐1 producing SMC, inducing lateral sheet migration as well as in gel sprouting angiogenesis. Taken together, the data establish the spheroidal EC/SMC system as a powerful cell culture model to study paracrine interactions in the vessel wall and provide functional evidence for smooth muscle cell‐mediated quiescence effects on endothelial cells.—Korff, T., Kimmina, S., Martiny‐Baron, G., Augustin, H. G. Blood vessel maturation in a 3‐dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 15, 447‐457 (2001)


International Journal of Cancer | 1999

Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1

Valentin Goede; Laura Brogelli; Marina Ziche; Hellmut G. Augustin

Almost any growth of tumors is to some extent associated with an inflammatory reaction which may be anti‐tumorigenic by acting directly on tumor cells or protumorigenic cells presumably by inducing tumor‐associated angiogenesis. In this study, we have analyzed the angiogenesis‐inducing capacity of monocyte chemoattractant protein‐1 (MCP‐1), a key regulatory molecule of monocyte trafficking to sites of inflammation. MCP‐1 was found to be potently angiogenic when implanted into rabbit cornea, exerting potency similar to the specific angiogenic vascular endothelial growth factor (VEGF)‐A121. MCP‐1‐induced angiogenesis in the cornea is associated with prominent recruitment of macrophages, whereas VEGF‐A121‐induced corneal angiogenesis is devoid of inflammatory cell recruitment. Based on these findings, we studied MCP‐1 expression and macrophage recruitment in human invasive ductal mammary carcinomas in comparison with the physiological angiogenic processes in bovine ovarian corpus luteum. Macrophage recruitment was always associated with MCP‐1 expression. High macrophage counts in mammary tumors corresponded with poor prognosis. In contrast, physiological ovarian angiogenesis was associated with only minimal inflammatory recruitment of macrophages. Our data show that MCP‐1 is an indirect inflammation‐associated inducer of angiogenesis and demonstrate distinct qualitative differences between tumor angiogenesis in human mammary tumors and physiological angiogenesis in the ovary. Int. J. Cancer 82:765–770, 1999.


Journal of Cell Science | 2005

The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism.

Marion Scharpfenecker; Ulrike Fiedler; Yvonne Reiss; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the endothelial receptor tyrosine kinase Tie-2, which controls vascular assembly and endothelial quiescence. The largely complementary phenotypes of Ang-1-deficient mice and Ang-2-overexpressing mice have led to an antagonistic model in which Ang-1 acts as Tie-2-activating agonist and Ang-2 acts as a Tie-2-inhibiting antagonist. To date, no mechanistic equivalent of the antagonistic Ang-1/Ang-2 model has been established and the mechanisms of Ang-2 function in particular remain mysterious. We have studied the effector functions of Ang-1 and Ang-2 on quiescent endothelial cells using a three-dimensional co-culture model of endothelial cells and smooth-muscle cells. Endothelial-cell monolayer integrity in this model is dependent on Tie-2 signaling, as evidenced by detaching endothelial cells following exposure to the small molecular weight Tie-2 inhibitor A-422885.66, which cannot be overcome by exogenous Ang-1. Accordingly, exogenous Ang-2 rapidly destabilizes the endothelial layer, which can be observed within 30-60 minutes and leads to prominent endothelial-cell detachment within 4 hours. Exogenous Ang-2-mediated endothelial-cell detachment can be rescued by Ang-1, soluble Tie-2 and vascular endothelial growth factor. Similar findings were obtained in an umbilical-vein explant model. Ang-2 is mainly produced by endothelial cells and therefore acts primarily in an autocrine manner. Thus, stimulated release of endogenous Ang-2 or overexpression of Ang-2 in endothelial cells perturbs co-culture spheroid integrity, which can be rescued by exogenous Ang-1 and vascular endothelial growth factor. However, autocrine Ang-2-mediated endothelial-cell detachment cannot be blocked by soluble Tie-2. Taken together, the data demonstrate for the first time the antagonistic Ang-1/Ang-2 concept in a defined cellular model and identify Ang-2 as a rapidly acting autocrine regulator of the endothelium that acts through an internal autocrine loop mechanism.


Nature | 2008

Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia

Keizo Kanasaki; Kristin Palmsten; Hikaru Sugimoto; Shakil Ahmad; Yuki Hamano; Liang Xie; Samuel Parry; Hellmut G. Augustin; Vincent H. Gattone; Judah Folkman; Jerome F. Strauss; Raghu Kalluri

Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt-/- pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1α expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.


Angiogenesis | 2009

The role of the Angiopoietins in vascular morphogenesis

Markus Thomas; Hellmut G. Augustin

AbstractsThe Angiopoietin/Tie system acts as a vascular specific ligand/receptor system to control endothelial cell survival and vascular maturation. The Angiopoietin family includes four ligands (Angiopoietin-1, Angiopoietin-2 and Angiopoietin-3/4) and two corresponding tyrosine kinase receptors (Tie1 and Tie2). Ang-1 and Ang-2 are specific ligands of Tie2 binding the receptor with similar affinity. Tie2 activation promotes vessel assembly and maturation by mediating survival signals for endothelial cells and regulating the recruitment of mural cells. Ang-1 acts in a paracrine agonistic manner inducing Tie2 phosphorylation and subsequent vessel stabilization. In contrast, Ang-2 is produced by endothelial cells and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 thereby primes the vascular endothelium to exogenous cytokines and induces vascular destabilization at higher concentrations. Ang-2 is strongly expressed in the vasculature of many tumors and it has been suggested that Ang-2 may act synergistically with other cytokines such as vascular endothelial growth factor to promote tumor-associated angiogenesis and tumor progression. The better mechanistic understanding of the Ang/Tie system is gradually paving the way toward the rationale exploitation of this vascular signaling system as a therapeutic target for neoplastic and non-neoplastic diseases.


Journal of Clinical Investigation | 2012

Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling

Moritz Felcht; Robert Luck; Alexander Schering; Philipp Seidel; Kshitij Srivastava; Junhao Hu; Arne Bartol; Yvonne Kienast; Christiane Vettel; Elias K. Loos; Simone Kutschera; Susanne Bartels; Sila Appak; Eva Besemfelder; Dorothee Terhardt; Emmanouil Chavakis; Thomas Wieland; Christian Klein; Markus Thomas; Akiyoshi Uemura; Sergij Goerdt; Hellmut G. Augustin

Angiopoietin-2 (ANG-2) is a key regulator of angiogenesis that exerts context-dependent effects on ECs. ANG-2 binds the endothelial-specific receptor tyrosine kinase 2 (TIE2) and acts as a negative regulator of ANG-1/TIE2 signaling during angiogenesis, thereby controlling the responsiveness of ECs to exogenous cytokines. Recent data from tumors indicate that under certain conditions ANG-2 can also promote angiogenesis. However, the molecular mechanisms of dual ANG-2 functions are poorly understood. Here, we identify a model for the opposing roles of ANG-2 in angiogenesis. We found that angiogenesis-activated endothelium harbored a subpopulation of TIE2-negative ECs (TIE2lo). TIE2 expression was downregulated in angiogenic ECs, which abundantly expressed several integrins. ANG-2 bound to these integrins in TIE2lo ECs, subsequently inducing, in a TIE2-independent manner, phosphorylation of the integrin adaptor protein FAK, resulting in RAC1 activation, migration, and sprouting angiogenesis. Correspondingly, in vivo ANG-2 blockade interfered with integrin signaling and inhibited FAK phosphorylation and sprouting angiogenesis of TIE2lo ECs. These data establish a contextual model whereby differential TIE2 and integrin expression, binding, and activation control the role of ANG-2 in angiogenesis. The results of this study have immediate translational implications for the therapeutic exploitation of angiopoietin signaling.


Journal of Cell Biology | 2005

Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2

Pipsa Saharinen; Katja Kerkelä; Niklas Ekman; Marie B. Marron; Nicholas P.J. Brindle; Gyun Min Lee; Hellmut G. Augustin; Gou Young Koh; Kari Alitalo

The Tie1 receptor tyrosine kinase was isolated over a decade ago, but so far no ligand has been found to activate this receptor. Here, we have examined the potential of angiopoietins, ligands for the related Tie2 receptor, to mediate Tie1 activation. We show that a soluble Ang1 chimeric protein, COMP-Ang1, stimulates Tie1 phosphorylation in endothelial cells with similar kinetics and angiopoietin dose dependence when compared with Tie2. The phosphorylation of overexpressed Tie1 was weakly induced by COMP-Ang1 also in transfected cells that do not express Tie2. When cotransfected, Tie2 formed heteromeric complexes with Tie1, enhanced Tie1 activation, and induced phosphorylation of a kinase-inactive Tie1 in a ligand-dependent manner. Tie1 phosphorylation was also induced by native Ang1 and Ang4, although less efficiently than with COMP-Ang1. In conclusion, we show that Tie1 phosphorylation is induced by multiple angiopoietin proteins and that the activation is amplified via Tie2. These results should be important in dissecting the signal transduction pathways and biological functions of Tie1.

Collaboration


Dive into the Hellmut G. Augustin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junhao Hu

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Korn

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Eva Besemfelder

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Holger Weber

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Soniya Savant

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge