Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helmar Waiczies is active.

Publication


Featured researches published by Helmar Waiczies.


Brain | 2008

Perivascular spaces-MRI marker of inflammatory activity in the brain?

Jens Wuerfel; Mareile Haertle; Helmar Waiczies; Eva Tysiak; Ingo Bechmann; Klaus D. Wernecke; Frauke Zipp; Friedemann Paul

The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions in 45 multiple sclerosis patients and 30 healthy controls of similar age and gender distribution, applying three different MRI sequence modalities (T(2)-weighted, T(1)-weighted and FLAIR). VRS were detected in comparable numbers in both multiple sclerosis patients and healthy individuals, indicating that perivascular compartments present on MRI are not a unique feature of multiple sclerosis. However, multiple sclerosis patients had significantly larger VRS volumes than healthy controls (P = 0.004). This finding was not explained by a significantly lower brain parenchymal fraction (BPF), resulting from a higher degree of atrophy, in the patient cohort. In a multiple linear regression analysis, age had a significant influence on VRS volumes in the control group but not in multiple sclerosis patients (P = 0.023 and P = 0.263, respectively). A subsequent prospective longitudinal substudy with monthly follow-up MRI over a period of up to 12 months in 18 patients revealed a significant increase in VRS volumes and counts accompanying the occurrence of contrast-enhancing lesions (CEL). At time points when blood-brain barrier (BBB) breakdown was indicated by the appearance of CEL, total VRS volumes and counts were significantly higher compared with preceding time points without CEL (P = 0.011 and P = 0.041, respectively), whereas a decrease thereafter was not statistically significant. Thus, our data points to an association of VRS with CEL as a sign for inflammation rather than with factors such as age, observed in healthy controls, and therefore suggests a role of VRS in inflammatory processes of the brain.


PLOS ONE | 2008

Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis.

Friedemann Paul; Sonia Waiczies; Jens Wuerfel; Judith Bellmann-Strobl; Jan Dörr; Helmar Waiczies; Mareile Haertle; Klaus D. Wernecke; Hans-Dieter Volk; Orhan Aktas; Frauke Zipp

Background Recent data from animal models of multiple sclerosis (MS) and from a pilot study indicated a possible beneficial impact of statins on MS. Methodology/Principal Findings Safety, tolerability and effects on disease activity of atorvastatin given alone or in combination with interferon-beta (IFN-β) were assessed in a phase II open-label baseline-to-treatment trial in relapsing-remitting MS (RRMS). Patients with at least one gadolinium-enhancing lesion (CEL) at screening by magnetic resonance imaging (MRI) were eligible for the study. After a baseline period of 3 monthly MRI scans (months −2 to 0), patients followed a 9-month treatment period on 80 mg atorvastatin daily. The number of CEL in treatment months 6 to 9 compared to baseline served as the primary endpoint. Other MRI-based parameters as well as changes in clinical scores and immune responses served as secondary endpoints. Of 80 RRMS patients screened, 41 were included, among them 16 with IFN-β comedication. The high dose of 80 mg atorvastatin was well tolerated in the majority of patients, regardless of IFN-β comedication. Atorvastatin treatment led to a substantial reduction in the number and volume of CEL in two-sided multivariate analysis (p = 0.003 and p = 0.008). A trend towards a significant decrease in number and volume of CEL was also detected in patients with IFN-β comedication (p = 0.060 and p = 0.062), in contrast to patients without IFN-β comedication (p = 0.170 and p = 0.140). Immunological investigations showed no suppression in T cell response but a significant increase in IL-10 production. Conclusions/Significance Our data suggest that high-dose atorvastatin treatment in RRMS is safe and well tolerated. Moreover, MRI analysis indicates a possible beneficial effect of atorvastatin, alone or in combination with IFN-β, on the development of new CEL. Thus, our findings provide a rationale for phase II/III trials, including combination of atorvastatin with already approved immunomodulatory therapy regimens. Trial Registration ClinicalTrials.gov NCT00616187


Acta Neuropathologica | 2013

GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis

Min-Chi Ku; Susanne A. Wolf; Dorota Respondek; Vitali Matyash; Andreas Pohlmann; Sonia Waiczies; Helmar Waiczies; Thoralf Niendorf; Michael Synowitz; Rainer Glass; Helmut Kettenmann

High-grade gliomas are the most common primary brain tumors. Their malignancy is promoted by the complex crosstalk between different cell types in the central nervous system. Microglia/brain macrophages infiltrate high-grade gliomas and contribute to their progression. To identify factors that mediate the attraction of microglia/macrophages to malignant brain tumors, we established a glioma cell encapsulation model that was applied in vivo. Mouse GL261 glioma cell line and human high-grade glioma cells were seeded into hollow fibers (HF) that allow the passage of soluble molecules but not cells. The glioma cell containing HF were implanted into one brain hemisphere and simultaneously HF with non-transformed fibroblasts (controls) were introduced into the contralateral hemisphere. Implanted mouse and human glioma- but not fibroblast-containing HF attracted microglia and up-regulated immunoreactivity for GFAP, which is a marker of astrogliosis. In this study, we identified GDNF as an important factor for microglial attraction: (1) GL261 and human glioma cells secret GDNF, (2) reduced GDNF production by siRNA in GL261 in mouse glioma cells diminished attraction of microglia, (3) over-expression of GDNF in fibroblasts promoted microglia attraction in our HF assay. In vitro migration assays also showed that GDNF is a strong chemoattractant for microglia. While GDNF release from human or mouse glioma had a profound effect on microglial attraction, the glioma-induced astrogliosis was not affected. Finally, we could show that injection of GL261 mouse glioma cells with GDNF knockdown by shRNA into mouse brains resulted in reduced tumor expansion and improved survival as compared to injection of control cells.


Neuro-oncology | 2013

Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion

Katyayni Vinnakota; Feng Hu; Min-Chi Ku; Petya B. Georgieva; Frank Szulzewsky; Andreas Pohlmann; Sonia Waiczies; Helmar Waiczies; Thoralf Niendorf; Seija Lehnardt; Uwe-Karsten Hanisch; Michael Synowitz; Darko Markovic; Susanne A. Wolf; Rainer Glass; Helmut Kettenmann

BACKGROUND Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). METHODS Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. RESULTS The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. CONCLUSIONS Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype.


PLOS ONE | 2013

Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.

Lukas Winter; Celal Özerdem; Werner Hoffmann; Davide Santoro; Alexander Müller; Helmar Waiczies; Reiner Seemann; Andreas Graessl; Peter Wust; Thoralf Niendorf

This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.


Journal of Magnetic Resonance Imaging | 2011

Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T.

Matthias A. Dieringer; Wolfgang Renz; Tomasz Lindel; F. Seifert; Tobias Frauenrath; Florian von Knobelsdorff-Brenkenhoff; Helmar Waiczies; Werner Hoffmann; Jan Rieger; Harald Pfeiffer; Bernd Ittermann; Jeanette Schulz-Menger; Thoralf Niendorf

To design and evaluate a four‐channel cardiac transceiver coil array for functional cardiac imaging at 7T.


Journal of Neuroinflammation | 2009

Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI

Eva Tysiak; Patrick Asbach; Orhan Aktas; Helmar Waiczies; Maureen Smyth; Joerg Schnorr; Matthias Taupitz; Jens Wuerfel

BackgroundGadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE.MethodsEAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia.ResultsBoth contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix.ConclusionVSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means.


PLOS ONE | 2011

Perfluorocarbon Particle Size Influences Magnetic Resonance Signal and Immunological Properties of Dendritic Cells

Helmar Waiczies; Stefano Lepore; Nicole Janitzek; Ulrike Hagen; F. Seifert; Bernd Ittermann; Bettina Purfürst; Antonio Pezzutto; Friedemann Paul; Thoralf Niendorf; Sonia Waiczies

The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.


PLOS ONE | 2013

High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury.

Andreas Pohlmann; Jan Hentschel; Mandy Fechner; Uwe Hoff; Gordana Bubalo; Karen Arakelyan; Erdmann Seeliger; Bert Flemming; Helmar Waiczies; Sonia Waiczies; Wolf-Hagen Schunck; Duska Dragun; Thoralf Niendorf

Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive in vivo parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T2* and T2, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T2*/T2 mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of in vivo changes in all kidney regions during ischemia and early reperfusion. Significant changes in T2* and T2 were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for in-vivo monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI.


PLOS ONE | 2012

Functional and Morphological Cardiac Magnetic Resonance Imaging of Mice Using a Cryogenic Quadrature Radiofrequency Coil

Babette Wagenhaus; Andreas Pohlmann; Matthias A. Dieringer; Antje Els; Helmar Waiczies; Sonia Waiczies; Jeanette Schulz-Menger; Thoralf Niendorf

Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR) constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR) in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality – by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae – and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

Collaboration


Dive into the Helmar Waiczies's collaboration.

Top Co-Authors

Avatar

Thoralf Niendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Sonia Waiczies

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Andreas Pohlmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Lukas Winter

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Min-Chi Ku

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Oberacker

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jan Rieger

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge