Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helmut Elsenbeer is active.

Publication


Featured researches published by Helmut Elsenbeer.


Water Resources Research | 1995

Mixing Model Approaches to Estimate Storm Flow Sources in an Overland Flow‐Dominated Tropical Rain Forest Catchment

Helmut Elsenbeer; Daniel Lorieri; Mike Bonell

Previous hydrometric studies demonstrated the prevalence of overland flow as a hydrological pathway in the tropical rain forest catchment of South Creek, northeast Queensland. The purpose of this study was to consider this information in a mixing analysis with the aim of identifying sources of, and of estimating their contribution to, storm flow during two events in February 1993. K and acid-neutralizing capacity (ANC) were used as tracers because they provided the best separation of the potential sources, saturation overland flow, soil water from depths of 0.3, 0.6, and 1.2 m, and hillslope groundwater in a two-dimensional mixing plot. It was necessary to distinguish between saturation overland flow, generated at the soil surface and following unchanneled pathways, and overland flow in incised pathways. This latter type of overland flow was a mixture of saturation overland flow (event water) with high concentrations of K and a low ANC, soil water (preevent water) with low concentrations of K and a low ANC, and groundwater (preevent water) with low concentrations of K and a high ANC. The same sources explained the streamwater chemistry during the two events with strongly differing rainfall and antecedent moisture conditions. The contribution of saturation overland flow dominated the storm flow during the first, high-intensity, 178-mm event, while the contribution of soil water reached 50% during peak flow of the second, low-intensity, 44-mm event 5 days later. This latter result is remarkably similar to soil water contributions to storm flow in mountainous forested catchments of the southeastern United States. In terms of event and preevent water the storm flow hydrograph of the high-intensity event is dominated by event water and that of the low-intensity event by preevent water. This study highlights the problems of applying mixing analyses to overland flow-dominated catchments and soil environments with a poorly developed vertical chemical zonation and emphasizes the need for independent hydrometric information for a complete characterization of watershed hydrology and chemistry.


Catena | 2004

Scale dependency in spatial patterns of saturated hydraulic conductivity

J.A. Sobieraj; Helmut Elsenbeer; G. Cameron

This study investigates spatial patterns of Ks and tests the hypothesis of whether structural variance emerges from noise with increasing sampling precision. We analyzed point measurements of Ks along independent transects at sampling intervals of 25, 10, 1 and 0.25 m. The field area is a tropical rainforest catena (i.e. toposequence) characterized by systematic downslope changes in soil properties including color (red to yellow), mineralogy (kaolinite–illite to kaolinite) and texture (sandy clay to sand). Independent transects spanning the entire catena at lag intervals of 25 and 10 m reveal little to no spatial patterns in Ks; i.e. scatter plots are noisy and lack apparent spatial trends, and semivariograms suggest little to no autocorrelation in Ks. As sampling precision is increased (h=1 and 0.25 m), spatial patterns emerge in Ks for the downslope areas, in which distinctive hydraulic boundaries in Ks correlate with relatively small-scale, topography-controlled soils with coarse textures (≥80% sand). For these areas, semivariograms of Ks and those of %sand and %clay exhibit similar spatial structure characterized by small nugget variances and large ranges, and nugget variance is reduced as sampling precision increases from 1 to 0.25 m. In the upslope, clay-rich locations along this toposequence, Ks exhibits few spatial patterns, irrespective of sampling scale. For these locations, scatter plots are noisy without apparent spatial trends, and semivariograms show almost complete nugget variance, suggesting little to no correlation in this hydraulic parameter at any scale. This study suggests that in the absence of coarse textures (≥80% sand), there is little predictability in Ks, even at sampling intervals of 0.25 m. We believe this lack of spatial structure is due to a predominance of small-scale processes such as biological activity that largely control Ks in this forested setting.


Journal of Hydrology | 1996

Hydrometric and hydrochemicai evidence for fast flowpaths at La Cuenca, Western Amazonia

Helmut Elsenbeer; Andreas Lack

Abstract A hydrological reconnaissance study in a first-order tropical rainforest catchment in western Amazonia implicated overland flow as an important hydrological pathway. A complementary hydrometric and hydrochemical approach that involved the recording of overland flow hydrographs and the determination of streamflow, overland flow, groundwater, soil water, and throughfall chemical signatures, was essential to establish unambiguously the importance of this pathway. Largely uncontrolled by topography, overland flow does occur in any season, regardless of antecedent moisture conditions, which only influence the volumes generated. The latter effect is also reflected in a close approximation of stormflow and overland flow chemical signatures, as expressed in the K/SiO ratio. We conclude that, despite its greater logistical demands, a complementary hydrometric/hydrochemical approach is essential to understand a catchments hydrological behaviour, especially where fast pathways are at work; such pathways are apparently common in more forest ecosystems than has been previously assumed.


Hydrological Processes | 2000

Stormflow generation and flowpath characteristics in an Amazonian rainforest catchment

Helmut Elsenbeer; Rob Vertessy

The Amazon basin covers an area of roughly 7 × 106 km2 and encompasses diverse soil – landscape types with potentially differing hydrological behaviour. This study was conducted in the Ultisol landscape of the western Amazon basin in Peru. Processes of stormflow generation were investigated on an event basis in a first-order rainforest catchment to establish a causal link between soil physical and precipitation characteristics, hillslope flowpaths and stormflow hydrograph attributes. A sharp decrease in soil hydraulic conductivity with depth and high rainfall intensity and frequency favour rapid near-surface flowpaths, mainly in the form of saturation-excess overland flow and return flow. The latter results in an almost random occurrence of overland flow, with no obvious topographic control. Hillslope flowpaths do not vary much with respect to the hydrograph attributes time of rise, response time, lag time and centroid lag time. They have the same response time as streamflow, but a somewhat lower time of rise and significantly shorter lag times. The recession constant for hillslope hydrographs is about 10 min, in contrast to the streamflow recession constants of 28, 75 and 149 min. Stormflow generation in this Ultisol rainforest catchment differs strongly from that reported for Oxisol rainforest catchments. These two soilscapes may define a spectrum of possible catchment hydrological behaviour in the Amazon basin. Copyright


Journal of Hydrology | 1994

Hydrologic pathways and stormflow hydrochemistry at South Creek, northeast Queensland

Helmut Elsenbeer; Adam West; Mike Bonell

Abstract Earlier investigations at South Creek in northeastern Queensland established the importance of overland flow as a hydrologic pathway in this tropical rainforest environment. Since this pathway is ‘fast’, transmitting presumably ‘new’ water, its importance should be reflected in the stormflow chemistry of South Creek: the greater the volumentric contribution to the stormflow hydrograph, the more similarity between the chemical composition of streamwater and of overland flow is to be expected. Water samples were taken during two storm events in an ephemeral gully (gully A), an intermittent gully (gully B) and at the South Creek catchment outlet; additional spot checks were made in several poorly defined rills. The chemical composition of ‘old’ water was determined from 45 baseflow samples collected throughout February. The two events differed considerably in their magnitudes, intensities and antecedent moisture conditions. In both events, the stormflow chemistry in South Creek was characterized by a sharp decrease in Ca, Mg, Na, Si, Cl, EC, ANC, alkalinity and total inorganic carbon. pH remained nearly constant with discharge, whereas K increased sharply, as did sulfate in an ill-defined manner. In event 1, this South Creek stormflow pattern was closely matched by the pattern in gully A, implying a dominant contribution of ‘new’ water. This match was confirmed by the spot samples from rills. Gully B behaved like South Creek itself, but with a dampened ‘new’ water signal, indicating less overland flow generation in its subcatchment. In event 2, which occurred five days later, the initial ‘new’ water signal in gully A was rapidly overwhelmed by a different signal which is attributed to rapid drainage from a perched water table. This study shows that stormflow in this rainforest catchment consists predominantly of ‘new’ water which reaches the stream channel via ‘fast’ pathways. Where the ephemeral gullies delivering overland flow are incised deeply enough to intersect a perched water table, a delayed, ‘old’ water-like signal may be transmitted.


Water Resources Research | 1995

Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, Western Amazonia

Helmut Elsenbeer; Andreas Lack; Keith Cassel

A forested first-order catchment in western Amazonia was monitored for 2 years to determine the chemical fingerprints of precipitation, throughfall, overland flow, pipe flow, soil water, groundwater, and streamflow. We used five tracers (hydrogen, calcium, magnesium, potassium, and silica) to distinguish “fast” flow paths mainly influenced by the biological subsystem from “slow” flow paths in the geochemical subsystem. The former comprise throughfall, overland flow, and pipe flow and are characterized by a high potassium/silica ratio; the latter are represented by soil water and groundwater, which have a low potassium/silica ratio. Soil water and groundwater differ with respect to calcium and magnesium. The groundwater-controlled streamflow chemistry is strongly modified by contributions from fast flow paths during precipitation events. The high potassium/silica ratio of these flow paths suggests that the storm flow response at La Cuenca is dominated by event water.


Water Resources Research | 1999

Distributed modeling of storm flow generation in an Amazonian rain forest catchment: Effects of model parameterization

Rob Vertessy; Helmut Elsenbeer

We describe a process-based storm flow generation model, Topog_SBM consisting of a simple bucket model for soil water accounting, a one-dimensional kinematic wave overland flow scheme, and a contour-based element network for routing surface and subsurface flows. Aside from topographic data and rainfall the model has only six input parameters: soil depth (z), saturated hydraulic conductivity at the soil surface (K0), the rate of decay in K0 with depth (m), the Manning surface roughness parameter (n), the maximum (saturated) soil water content (θs), and the minimum (residual) soil water content (θr). However, the model is fully distributed, so these values can vary in magnitude across space. The model was applied to La Cuenca, a very small rainforest catchment in western Amazonia that has been well characterized in several hydrometric and hydrochemical investigations. Total runoff, peak runoff, time of rise, and lag time were predicted for 34 events of varying magnitudes and antecedent moisture conditions. We compared results for eight different model parameterizations or “sets”; four of these were freely calibrated to yield the best possible model fit to runoff data, whereas the other four were constrained (in various ways) by the use of actual K0 data gathered for the catchment. The eight sets were calibrated on either one of three events or on the three events jointly to illustrate the importance of calibration event selection on model performance. Model performance was evaluated by comparing observed and predicted (1) storm flow hydrograph attributes and (2) spatiotemporal patterns of overland flow occurrence across the catchment. The model generally predicted the right amount of runoff but usually underpredicted the peak runoff rate and overpredicted the time of rise. The “best” parameterization could credibly predict hydrographs for only about half of the events. Significant, and sometimes gross, errors were encountered for about one fourth of the events modeled, raising concerns in our minds about the a priori simulation of events that diverge too far from the conditions that the model was calibrated for. For the best parameterization we were able to predict an overland flow frequency distribution that accorded with field observations, though the model almost always overpredicted the spatial extent of overland flow. We concluded that model performance for the La Cuenca conditions could be enhanced by adding a “fast” subsurface flow pathway and/or by modifying the K0 versus depth decay function.


Geoderma | 2002

Spatial variability of soil hydraulic conductivity along a tropical rainforest catena

J.A. Sobieraj; Helmut Elsenbeer; R.M Coelho; B Newton

Abstract We investigate the spatial variability of saturated hydraulic conductivity (Ksat) along a tropical rainforest catena, which consists of a Typic Kandiudult (Latossolo Vermelho Distrofico argissolico) and Plinthic Hapludox (Latossolo Amarelo Distrofico tipico). The former soil type extends from midslope to interfluve and has a high clay content throughout the profile, whereas the latter soil type extends from the midslope to valley bottom and only has a high clay content at depths >90 cm. We measured Ksat along a transect at depths of 20, 30, 50 and 90 cm with a compact, constant-head permeameter. Ksat is not significantly different (α=0.10) between these soil types at any depth except for 90 cm. Ordinary and robust linear regression models with distance from the interfluve as in the independent variable showed no significant change in Ksat as a function of topography. Loess regression showed some dependency of Ksat on topography only at the 90-cm depth. Semivariograms showed no apparent spatial structure in Ksat at distances ≥25 m for all depths. We conclude that the strong topography dependence of soil types along this catena and, hence, primary soil attributes, is not reflected in a similar dependence of Ksat, and tentatively attribute this lack of dependence to the overriding influence of bioturbation-controlled macroporosity. We outline a framework for detecting possible Ksat–topography relationships based on the distinction between bioturbation-controlled nonstructural macroporosity and mineralogy-controlled structural macroporosity.


Water Resources Research | 1992

Spatial Analysis of Soil Hydraulic Conductivity in a Tropical Rain Forest Catchment

Helmut Elsenbeer; Keith Cassel; Jorge Castro

The topography of first-order catchments in a region of western Amazonia was found to exhibit distinctive, recurrent features: a steep, straight lower side slope, a flat or nearly flat terrace at an intermediate elevation between valley floor and interfluve, and an upper side slope connecting interfluve and intermediate terrace. A detailed survey of soil-saturated hydraulic conductivity (Ksat)-depth relationships, involving 740 undisturbed soil cores, was conducted in a 0.75-ha first-order catchment. The sampling approach was stratified with respect to the above slope units. Exploratory data analysis suggested fourth-root transformation of batches from the 0–0.1 m depth interval, log transformation of batches from the subsequent 0.1 m depth increments, and the use of robust estimators of location and scale. The Ksat of the steep lower side slope decreased from 46 to 0.1 mm/h over the overall sampling depth of 0.4 m. The corresponding decrease was from 46 to 0.1 mm/h on the intermediate terrace, from 335 to 0.01 mm/h on the upper side slope, and from 550 to 0.015 mm/h on the interfluve. A depthwise comparison of these slope units led to the formulation of several hypotheses concerning the link between Ksat and topography.


Hydrological Processes | 1999

Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil

Helmut Elsenbeer; Bradley E. Newton; Thomas Dunne; Jorge Marcos de Moraes

We investigated the changes of saturated hydraulic conductivity, Ksat , with depth of latosols developed on Precambrian basement rocks under primary rainforest, pasture and teak. In all cases, Ksat decreased with depth, with most of the decrease occurring between the surface and a depth of 30 cm. In conjunction with prevailing rainfall intensities and frequencies, this anisotropy supports a pronounced lateral component of hillslope flow paths, and also of overland flow under pasture. Our results are at variance with data from other latosols where Ksat tends to increase with depth, and hence suggest that considerable restraint is needed in generalization and extrapolation until results from a co-ordinated effort at hydrology-oriented data collection become available. Copyright

Collaboration


Dive into the Helmut Elsenbeer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Neill

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joaquín Chaves

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert F. Stallard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Schröder

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge