Helmut Grasberger
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helmut Grasberger.
Journal of Biological Chemistry | 2006
Helmut Grasberger; Samuel Refetoff
Dual oxidase 2 (DUOX2), an NADPH:O2 oxidoreductase flavoprotein, is a component of the thyroid H2O2 generator crucial for hormone synthesis at the apical membrane. Mutations in DUOX2 produce congenital hypothyroidism in humans. However, no functional DUOX-based NADPH oxidase has ever been reconstituted at the plasma membrane of transfected cells. It has been proposed that DUOX retention in the endoplasmatic reticulum (ER) of heterologous systems is due to the lack of an unidentified component required for functional maturation of the enzyme. By data mining of a massively parallel signature sequencing tissue expression data base, we identified an uncharacterized gene named DUOX maturation factor (DUOXA2) arranged head-to-head to and co-expressed with DUOX2. A paralog (DUOXA1) was similarly linked to DUOX1. The genomic rearrangement leading to linkage of ancient DUOX and DUOXA genes could be traced back before the divergence of echinoderms. We demonstrate that co-expression of DUOXA2, an ER-resident transmembrane protein, allows ER-to-Golgi transition, maturation, and translocation to the plasma membrane of functional DUOX2 in a heterologous system. The identification of DUOXA genes has important implications for studies of the molecular mechanisms controlling DUOX expression and the molecular genetics of congenital hypothyroidism.
Journal of Biological Chemistry | 2009
Sabrina Rigutto; Candice Hoste; Helmut Grasberger; Milutin Milenkovic; David Communi; Jacques Emile Dumont; Bernard Corvilain; Françoise Miot; Xavier De Deken
Dual oxidases were initially identified as NADPH oxidases producing H2O2 necessary for thyroid hormone biosynthesis. The crucial role of Duox2 has been demonstrated in patients suffering from partial iodide organification defect caused by bi-allelic mutations in the DUOX2 gene. However, the Duox1 function in thyroid remains elusive. We optimized a functional assay by co-expressing Duox1 or Duox2 with their respective maturation factors, DuoxA1 and DuoxA2, to compare their intrinsic enzymatic activities under stimulation of the major signaling pathways active in the thyroid in relation to their membrane expression. We showed that basal activity of both Duox isoenzymes depends on calcium and functional EF-hand motifs. However, the two oxidases are differentially regulated by activation of intracellular signaling cascades. Duox1 but not Duox2 activity is stimulated by forskolin (EC50 = 0.1 μm) via protein kinase A-mediated Duox1 phosphorylation on serine 955. In contrast, phorbol esters induce Duox2 phosphorylation via protein kinase C activation associated with high H2O2 generation (phorbol 12-myristate 13-acetate EC50 = 0.8 nm). These results were confirmed in human thyroid cells, suggesting that Duox1 is also involved in thyroid hormonogenesis. Our data provide, for the first time, detailed insights into the mechanisms controlling the activation of Duox1–2 proteins and reveal additional phosphorylation-mediated regulation.
Current Opinion in Pediatrics | 2011
Helmut Grasberger; Samuel Refetoff
Purpose of review Overview of congenital hypothyroidism caused by thyroid hormone synthesis defects, the current understanding of their pathophysiology, and clinical implications of molecular diagnoses. Recent findings Genetic defects in all known thyroid-specific factors required for thyroid hormone synthesis have been described. These include defects in iodide trapping (NIS), in the facilitated iodide efflux across the apical membrane (PDS), the organification of iodide within the follicular lumen (thyroid peroxidase, DUOX2, DUOXA2), the substrate for thyroid hormone synthesis (thyroglobulin) and the ability to recover and retain intrathyroidal iodine (iodotyrosine deiodinase). Clinical and biochemical evaluation aids in selecting the most appropriate candidate gene(s). A definite molecular diagnosis of thyroid dyshormonogenesis allows genetic counseling and has prognostic value in differentiating transient from permanent congenital hypothyroidism and predicting the response of patients to iodine supplementation as adjunct or alternative treatment to L-T4 replacement. Summary Congenital hypothyroidism due to thyroid dyshormonogenesis is a heterogenic disorder that may be caused by mutations in any of the known steps in the thyroid hormone biosynthesis pathway. An exact molecular diagnosis allows genetic counseling and the identification of asymptomatic mutation carriers at risk of recurrent hypothyroidism, and provides a rationale for adjunct iodide supplementation.
Molecular and Cellular Endocrinology | 2010
Helmut Grasberger
Thyroperoxidase-catalyzed iodination of thyroglobulin and subsequent oxidative coupling of iodinated tyrosyl residues to protein-bound iodothyronines are the key reactions in thyroid hormone biosynthesis. Under sufficient iodine supply, both synthesis steps are rate-limited by the availability of hydrogen peroxide (H(2)O(2)), which is required as final electron acceptor. The primary enzyme feeding H(2)O(2) to thyroid peroxidase is a heterodimeric NADPH oxidase complex of dual oxidase 2 (DUOX2) and DUOX maturation factor 2 (DUOXA2) at the apical plasma membrane. While the thyrotropin receptor mediates most biological effects through the Gs/adenyl cyclase/cAMP pathway, the Gq/phospholipase C-beta cascade induces H(2)O(2) generation via synergistic effects of increased intracellular calcium and protein kinase C activation on DUOX2/DUOXA2. Defects in thyroidal H(2)O(2) generation have been identified in a subset of patients with congenital hypothyroidism. These include loss-of-function mutations in DUOX2 and DUOXA2. Thyrotropin receptor mutations with preferential loss of Gq-coupling may indirectly affect H(2)O(2) production. Expressivity of the defects can be highly variable owning to the presence of genetic modifiers (e.g., the paralogs DUOX1 and DUOXA1), and environmental factors particularly nutritional iodide intake.
Molecular Endocrinology | 2012
Helmut Grasberger; Xavier De Deken; Olga Barca Mayo; Houssam Raad; Mia Weiss; Xiao Hui Liao; Samuel Refetoff
Dual oxidases (DUOX1 and DUOX2) are evolutionary conserved reduced nicotinamide adenine dinucleotide phosphate oxidases responsible for regulated hydrogen peroxide (H(2)O(2)) release of epithelial cells. Specific maturation factors (DUOXA1 and DUOXA2) are required for targeting of functional DUOX enzymes to the cell surface. Mutations in the single-copy Duox and Duoxa genes of invertebrates cause developmental defects with reduced survival, whereas knockdown in later life impairs intestinal epithelial immune homeostasis. In humans, mutations in both DUOX2 and DUOXA2 can cause congenital hypothyroidism with partial iodide organification defects compatible with a role of DUOX2-generated H(2)O(2) in driving thyroid peroxidase activity. The DUOX1/DUOXA1 system may account for residual iodide organification in patients with loss of DUOX2, but its physiological function is less clear. To provide a murine model recapitulating complete DUOX deficiency, we simultaneously targeted both Duoxa genes by homologous recombination. Knockout of Duoxa genes (Duoxa(-/-) mice) led to a maturation defect of DUOX proteins lacking Golgi processing of N-glycans and to loss of H(2)O(2) release from thyroid tissue. Postnatally, Duoxa(-/-) mice developed severe goitreous congenital hypothyroidism with undetectable serum T4 and maximally disinhibited TSH levels. Heterozygous mice had normal thyroid function parameters. (125)I uptake and discharge studies and probing of iodinated TG epitopes corroborated the iodide organification defect in Duoxa(-/-) mice. Duoxa(-/-) mice on continuous T4 replacement from P6 showed normal growth without an overt phenotype. Our results confirm in vivo the requirement of DUOXA for functional expression of DUOX-based reduced nicotinamide adenine dinucleotide phosphate oxidases and the role of DUOX isoenzymes as sole source of hormonogenic H(2)O(2).
Gastroenterology | 2013
Helmut Grasberger; Mohamad El–Zaatari; Duyen T. Dang; Juanita L. Merchant
BACKGROUND & AIMS Dual oxidases (DUOX) are conserved reduced nicotinamide adenine dinucleotide phosphate oxidases that produce H2O2 at the epithelial cell surface. The DUOX enzyme comprises the DUOX and DUOX maturation factor (DUOXA) subunits. Mammalian genomes encode 2 DUOX isoenzymes (DUOX1/DUOXA1 and DUOX2/DUOXA2). Expression of these genes is up-regulated during bacterial infections and chronic inflammatory diseases of the luminal gastrointestinal tract. The roles of DUOX in cellular interactions with microbes have not been determined in higher vertebrates. METHODS Mice with disruptions of Duoxa1 and Duoxa2 genes (Duoxa(-/-) mice) and control mice were infected with Helicobacter felis to create a model of Helicobacter pylori infection--the most common human chronic infection. RESULTS Infection with H. felis induced expression of Duox2 and Duoxa2 in the stomachs of wild-type mice, and DUOX protein specifically localized to the apical surface of epithelial cells. H. felis colonized the mucus layer in the stomachs of Duoxa(-/-) mice to a greater extent than in control mice. The increased colonization persisted into the chronic phase of infection and correlated with an increased, yet ineffective, inflammatory response. H. felis colonization also was increased in Duoxa(+/-) mice, compared with controls. We observed reduced expression of the H2O2-inducible katA gene in H. felis that colonized Duoxa(-/-) mice, compared with that found in controls (P = .0002), indicating that Duox causes oxidative stress in these bacteria. In vitro, induction of oxidative defense by H. felis failed to prevent a direct bacteriostatic effect at sustained levels of H2O2 as low as 30 μmol/L. CONCLUSIONS Based on studies of Duoxa(-/-) mice, the DUOX enzyme complex prevents gastric colonization by H. felis and the inflammatory response. These findings indicate the nonredundant function of epithelial production of H2O2 in restricting microbial colonization.
The Journal of Clinical Endocrinology and Metabolism | 2011
Imge Hulur; Pia Hermanns; Claudia Nestoris; Sabine Heger; Samuel Refetoff; Joachim Pohlenz; Helmut Grasberger
CONTEXT Dual oxidases (DUOX1 and DUOX2) play a crucial role in the generation of hydrogen peroxide required in the oxidation of iodide and the synthesis of thyroid hormone. Heterodimerization with specific maturation factors (DUOXA1 and DUOXA2) is essential for the maturation and function of the DUOX enzyme complexes. Biallelic loss-of-function mutations of DUOX2 result in congenital hypothyroidism (CH), whereas a single reported case of homozygous DUOXA2 mutation (Y246X) has been associated with mild CH. OBJECTIVE We now report an infant with transient CH due to a complex genetic alteration of the DUOX/DUOXA system. RESULTS Our patient was born to euthyroid nonconsanguineous parents and presented with an elevated TSH and enlarged thyroid gland at neonatal screening. Genetic analysis revealed a missense mutation (C189R) on the maternal DUOXA2 allele. The mutant DUOXA2 protein showed complete loss-of-function in reconstituting DUOX2 in vitro. The apparent C189R homozygosity of the proband in the absence of the same mutation in the father led to detailed gene mapping, revealing an approximately 43-kb pair deletion encompassing DUOX2, DUOXA1, and DUOXA2. Thus, in addition to being deficient in DUOXA2, the proband lacks one allele of DUOX2 and DUOXA1 but has two functioning DUOX1 alleles. CONCLUSION The transient CH in the presence of only one functional maturation factor allele indicates a high level of functional redundancy in the DUOX/DUOXA system.
The Journal of Clinical Endocrinology and Metabolism | 2009
Yardena Tenenbaum-Rakover; Helmut Grasberger; Sunee Mamanasiri; Usanee Ringkananont; Lucia Montanelli; Marla S. Barkoff; Ahmad Mahameed-Hag A.M.-H. Dahood; Samuel Refetoff
CONTEXT Resistance to TSH (RTSH) is a condition of impaired responsiveness of the thyroid gland to TSH, characterized by elevated serum TSH, low or normal thyroid hormone levels, and hypoplastic or normal-sized thyroid gland. OBJECTIVES The aim of the study was to evaluate the clinical course and the genotype-phenotype relationship of RTSH caused by two different TSH receptor (TSHR) gene mutations in a consanguineous population. PATIENTS AND METHODS We conducted a clinical and genetic investigation of 46 members of an extended family and 163 individuals living in the same town. In vitro functional studies of the mutant TSHRs were also performed. RESULTS Two TSHR gene mutations (P68S and L653V) were identified in 33 subjects occurring as homozygous L653V (five subjects), heterozygous L653V (20 subjects), heterozygous P68S (four subjects), and compound heterozygous L653V/P68S (four subjects). With the exception of one individual with concomitant autoimmune thyroid disease, all homozygotes and compound heterozygotes presented with compensated RTSH (high TSH with free T(4) and T(3) in the normal range). Only nine of 24 heterozygotes had mild hyperthyrotropinemia. The L653V mutation resulted in a higher serum TSH concentration and showed a more severe in vitro abnormality than P68S. Haplotype analysis predicted a founder of the L653V six to seven generations earlier, whereas the P68S is older. Cross-sectional and prospective longitudinal studies indicate that TSH and T(4) concentrations remain stable over time. CONCLUSIONS High frequency hyperthyrotropinemia in an Israeli Arab-Muslim consanguineous community is attributed to two inactivating TSHR gene mutations. Concordant genotype-phenotype was demonstrated clinically and by in vitro functional analysis. Retrospective and prospective studies indicate that in the absence of concomitant autoimmune thyroid disease, elevated TSH levels reflect stable compensated RTSH.
Free Radical Biology and Medicine | 2013
Sandra Chang; Angela L. Linderholm; Lisa M. Franzi; Nicholas J. Kenyon; Helmut Grasberger; Richart W. Harper
Enhanced reactive oxygen species production in allergic airways is well described and correlates with increased airway contractions, inflammatory cell infiltration, goblet cell metaplasia, and mucus hypersecretion. There is also an abundance of interleukin-4/interleukin-13 (IL-4/IL-13)- or interleukin-5-secreting cells that are thought to be central to the pathogenesis of allergic asthma. We postulated that the dual oxidases (DUOX1 and DUOX2), members of the nicotinamide adenine dinucleotide phosphate oxidase family that release hydrogen peroxide (H2O2) in the respiratory tract, are critical proteins in the pathogenesis of allergic airways. DUOX activity is regulated by cytokines, including IL-4 and IL-13, and DUOX-mediated H2O2 influences several important features of allergic asthma: mucin production, IL-8 secretion, and wound healing. The objective of this study was to establish the contribution of DUOXs to the development of allergic asthma in a murine model. To accomplish this goal, we utilized a DUOXA-deficient mouse model (Duoxa(-/-)) that lacked maturation factors for both DUOX1 and DUOX2. Our results are the first to demonstrate evidence of DUOX protein and DUOX functional activity in murine airway epithelium. We also demonstrate that DUOXA maturation factors are required for airway-specific H2O2 production and localization of DUOX to cilia of fully differentiated airway epithelial cells. We compared wild-type and Duoxa(-/-) mice in an ovalbumin exposure model to determine the role of DUOX in allergic asthma. In comparison to DUOX-intact mice, Duoxa(-/-) mice had reduced mucous cell metaplasia and lower levels of TH2 cytokine levels in bronchoalveolar fluid. In addition, increased airway resistance in response to methacholine was observed in Duoxa(+/+) mice, as expected, but was absent in Duoxa(-/-) mice. Surprisingly, Duoxa(-/-) mice had decreased influx of neutrophils in bronchoalveolar fluid and lung tissue sections associated with a lower level of the chemotactic cytokine IL-6. These findings suggest that DUOX-derived H2O2 has an important role in signaling neutrophils into allergic airways.
The Journal of Clinical Endocrinology and Metabolism | 2011
Pia Hermanns; Helmut Grasberger; Samuel Refetoff; Joachim Pohlenz
CONTEXT Screening of the known candidate genes involved in thyroid organogenesis has revealed mutations in a small subset of patients with congenital hypothyroidism due to thyroid dysgenesis (TD). OBJECTIVE We studied a girl with TD who had mutations in two transcription factors involved in thyroid development. RESULTS Sequencing analysis of candidate genes involved in thyroid gland development revealed a new paternally inherited heterozygous mutation in the NKX2.5 gene (S265R) and a new maternally inherited heterozygous mutation in the PAX8 promoter region (-456C>T). Both parents and a brother, who was also heterozygous for both mutations, were phenotypically normal. Immunofluorescence microscopy showed a correct nuclear localization of both wild-type (WT) and mutant NKX2.5 proteins. EMSA demonstrated that the mutant NKX2.5 binds to the NKE_2, DIO2, TG, and TPO promoter elements equally well as the WT protein. However, the mutant NKX2.5 protein showed a 30-40% reduced transactivation of the thyroglobulin and the thyroid peroxidase promoters and a dominant-negative effect of the mutant NKX2.5. EMSA studies of the WT and mutant PAX8 promoter sequences incubated with nuclear extracts from PCCL3 cells exhibited a loss of protein binding capacity of the mutant promoter. In addition, the mutant PAX8 promoter showed a significantly reduced transcriptional activation of a luciferase reporter gene in vitro. Thus, this promoter mutation is expected to lead to reduced PAX8 expression. CONCLUSIONS We identified new heterozygous mutations in both NKX2.5 and PAX8 genes of a girl with TD. Both defects might contribute to the phenotype.