Helmut H. Strey
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helmut H. Strey.
Biophysical Journal | 1997
B.W. Koenig; Helmut H. Strey; Klaus Gawrisch
The elastic area compressibility modulus, Ka, of lamellar liquid crystalline bilayers was determined by a new experimental approach using 2H-NMR order parameters of lipid hydrocarbon chains together with lamellar repeat spacings measured by x-ray diffraction. The combination of NMR and x-ray techniques yields accurate determination of lateral area per lipid molecule. Samples of saturated, monounsaturated, and polyunsaturated phospholipids were equilibrated with polyethylene glycol (PEG) 20,000 solutions in water at concentrations from 0 to 55 wt % PEG at 30 degrees C. This procedure is equivalent to applying 0 to 8 dyn/cm lateral pressure to the bilayers. The resulting reductions in area per lipid were measured with a resolution of +/-0.2 A2 and the fractional area decrease was proportional to applied lateral pressure. For 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine, 1-stearoyl(d35)-2-oleoyl-sn-glycero-3-phosphocholine (SOPC-d35), and 1-stearoyl(d35)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35) cross-sectional areas per molecule in excess water of 59.5, 61.4, and 69.2 A2 and bilayer elastic area compressibility moduli of 141, 221, and 121 dyn/cm were determined, respectively. Combining NMR and x-ray results enables the determination of compressibility differences between saturated and unsaturated hydrocarbon chains. In mixed-chain SOPC-d35 both chains have similar compressibility moduli; however, in mixed-chain polyunsaturated SDPC-d35, the saturated stearic acid chain appears to be far less compressible than the polyunsaturated docosahexaenoic acid chain.
Biophysical Journal | 1996
Josef A. Käs; Helmut H. Strey; Jay X. Tang; D. Finger; R M Ezzell; E. Sackmann; Paul A. Janmey
Single actin filaments were analyzed in solutions ranging from dilute (0.2 microgram/ml), where filaments interact only with solvent, to concentrations (4.0 mg/ml) at which F-actin forms a nematic phase. A persistence length of approximately 1.8 microns and an average length of approximately 22 microns (Kaufmann et al., 1992) identify actin as a model for studying the dynamics of semiflexible polymers. In dilute solutions the filaments exhibit thermal bending undulations in addition to diffusive motion. At higher semidilute concentrations (1.4 mg/ml) three-dimensional reconstructions of confocal images of fluorescently labeled filaments in a matrix of unlabeled F-actin reveal steric interactions between filaments, which account for the viscoelastic behavior of these solutions. The restricted undulations of these labeled chains reveal the virtual tube formed around a filament by the surrounding actin. The average tube diameter scales with monomer concentration c as varies; is directly proportional to c-(0.5 +/- 0.15). The diffusion of filaments in semidilute solutions (c = (0.1-2.0) mg/ml) is dominated by diffusion along the filament contour (reptation), and constraint release by remodeling of the surrounding filaments is rare. The self-diffusion coefficient D parallel along the tube decreases linearly with the chain length for semidilute solutions. For concentrations > 2.5 mg/ml a transition occurs from an isotropic entangled phase to a coexistence between isotropic and nematic domains. Analysis of the molecular motions of filaments suggests that the filaments in the aligned domains are in thermal equilibrium and that the diffusion coefficient parallel to the director D parallel is nearly independent of filament length. We also report the novel direct observation of u-shaped defects, called hairpins, in the nematic domains.
PLOS ONE | 2009
Lilianne R. Mujica-Parodi; Helmut H. Strey; Blaise Frederick; Robert L. Savoy; David Cox; Yevgeny Botanov; Denis Tolkunov; Denis Rubin; Jochen Weber
Alarm substances are airborne chemical signals, released by an individual into the environment, which communicate emotional stress between conspecifics. Here we tested whether humans, like other mammals, are able to detect emotional stress in others by chemosensory cues. Sweat samples collected from individuals undergoing an acute emotional stressor, with exercise as a control, were pooled and presented to a separate group of participants (blind to condition) during four experiments. In an fMRI experiment and its replication, we showed that scanned participants showed amygdala activation in response to samples obtained from donors undergoing an emotional, but not physical, stressor. An odor-discrimination experiment suggested the effect was primarily due to emotional, and not odor, differences between the two stimuli. A fourth experiment investigated behavioral effects, demonstrating that stress samples sharpened emotion-perception of ambiguous facial stimuli. Together, our findings suggest human chemosensory signaling of emotional stress, with neurobiological and behavioral effects.
Current Opinion in Structural Biology | 1998
Helmut H. Strey; Rudi Podgornik; Donald C. Rau; V. Adrian Parsegian
The forces that govern DNA double helix organization are being finally systematically measured. The non-specific longer-range interactions--such as electrostatic interactions, hydration, and fluctuation forces--that treat DNA as a featureless rod are reasonably well recognized. Recently, specific interactions--such as those controlled by condensing agents or those consequent to helical structure-are beginning to be recognized, quantified and tested.
Physical Review E | 1999
Helmut H. Strey; V. A. Parsegian; Rudolf Podgornik
tions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure the equation of state for DNA liquid crystals in 0.1M to 1 M NaCl solutions. These measurements cover five orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equation of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the direct electrostatic double layer repulsion. This is an alternative way of measuring effective charge densities along semiflexible polyelectrolytes. @S1063-651X~99!11401-6#
EPL | 1993
Josef A. Käs; Helmut H. Strey; M. Bärmann; Erich Sackmann
Fourier analysis of the thermally excited undulations of fluorescence-labelled actin filaments allowed for the first time wave-vector-dependent measurements of the bending elastic modulus kc. At wave vectors q?>?2???106?m-1, scaling behaviour characteristic for bending undulations is clearly observed yielding a bending modulus of kc?=?(4.0???0.4)???10-27?Jm (corresponding to a persistence length Lp?=?0.5 ?m). For decreasing wave vector q the filament stiffness increases continuously. The wave-vector-dependent filament stiffness explains the differences of the persistence length as determined by static end-to-end distance measurements (Lp?=?(6???25)??m) and by dynamic techniques (e.g., rheology and quasi-elastic light scattering) yielding Lp?=?0.5??m. The filaments exhibit occasional bends which are attributed to defects in the double-stranded threads. Binding of tropomyosin leads to a decrease of the measured bending elasticity to kc?=?(1.11???0.09)???10-27?Jm for wave vectors q?>?2???106?m-1. The course of the wave vector dependence of the bending stiffness remains the same.
Biophysical Journal | 2008
Christopher B. Stanley; Helmut H. Strey
Protein folding and conformational changes are influenced by protein-water interactions and, as such, the energetics of protein function are necessarily linked to water activity. Here, we have chosen the helix-coil transition in poly(glutamic acid) as a model system to investigate the importance of hydration to protein structure by using the osmotic stress method combined with circular dichroism spectroscopy. Osmotic stress is applied using poly(ethylene glycol), molecular weight of 400, as the osmolyte. The energetics of the helix-coil transition under applied osmotic stress allows us to calculate the change in the number of preferentially included water molecules per residue accompanying the thermally induced conformational change. We find that osmotic stress raises the helix-coil transition temperature by favoring the more compact alpha-helical state over the more hydrated coil state. The contribution of other forces to alpha-helix stability also are explored by varying pH and studying a random copolymer, poly(glutamic acid-r-alanine). In this article, we clearly show the influence of osmotic pressure on the peptide folding equilibrium. Our results suggest that to study protein folding in vitro, the osmotic pressure, in addition to pH and salt concentration, should be controlled to better approximate the crowded environment inside cells.
Lab on a Chip | 2015
Eric Brouzes; Travis Kruse; Robert Kimmerling; Helmut H. Strey
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Polymer | 2001
Michael Leonard; H Hong; Nalini Easwar; Helmut H. Strey
Abstract In this article, we will show that the osmotic stress method can be successfully applied to study the thermodynamics of self-assembly phenomena in soft matter systems, such as biopolymer liquid crystals, surfactant and lipid mesophases, and polyelectrolyte–surfactant complexes. We will give two examples to that effect. Firstly, we will present intercolumnar force measurements between cylindrical surfactant micelles in solid-state polyelectrolyte–surfactant complexes as a function of ionic strength. Secondly, we will present measurements of the DNA cholesteric spherulite structure and pitch as a function of osmotic pressure in an effort to evaluate the chiral contribution to the interaction between DNA molecules.
Human Brain Mapping | 2012
Anca Radulescu; Denis Rubin; Helmut H. Strey; Lilianne R. Mujica-Parodi
Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system‐wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal‐limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect‐valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time‐courses and computed the geometry of time‐delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k1: Z = 4.3215, P = 0.00002 and k2: Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ −1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = −1.9437, P = 0.05 for k1; Z = −2.5099, P = 0.01 for k2). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. Hum Brain Mapp, 2011.