Helmut Mäurer
Technische Hochschule
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helmut Mäurer.
Archive | 1977
Helmut Mäurer
Die Frage, inwieweit geometrische Strukturen durch Symmetrieeigenschaften charakterisiert werden konnen, spielte in der Geometrie stets eine zentrale Rolle. In den letzten Jahrzehnten wurde z.B. die Forschungsrichtung im Bereich der metrischen Geometrie fast vollig durch diese Fragestellung bestimmt (vgl. [1]).
Monatshefte für Mathematik | 1978
Helmut Mäurer
A miquelian Laguerre-plan of characteristic ≠2 can be characterized by the property that for each pair {A, B} of non parallel points there exists an involutoric automorphism whose set of fixed points is exactly {A, B}.
Annals of discrete mathematics | 1988
Helmut Mäurer; Wolfgang Nolte
In [7], Pickert showed that an affine plane is isomorphic to an affine plane over a field if the dual Pappus theorem holds for two fixed pencils of parallel lines (see also [2]). Here we ask whether a similar result is true for an affine Hjelmslev plane Ω. The geometric structure Ω will be defined in such a generality that the algebraic models of affine Hjelmslev planes over commutative local rings (not only those over Hjelmslev rings) are included. We consider two distinguished not-neighbouring pencils V, W of parallel lines and assume the validity of the configuration conditions (DP), (SD). The main result is the following: If the epimorphic image a(Ω) of Ω is not a Fano plane then the incidence structure of Ω is isomorphic to that of an affine Hjelmslev plane Ω(R) over a local ring R. In R the element 2 is invertible. All pencils of parallel lines in Ω correspond to pencils of parallel lines in Ω(R) with the possible exception of those neighbouring V or W.
Geometriae Dedicata | 1995
Helmut Mäurer
AbstractCollineations τ1, τ2 of PG(2, ℝ) leaving invariant a compact convex setK
Results in Mathematics | 1991
Helmut Mäurer
Aequationes Mathematicae | 1980
Helmut Mäurer; Rudolf Metz; Wolfgang Nolte
\subseteq
Archiv der Mathematik | 1973
Helmut Mäurer
Archiv der Mathematik | 1983
Helmut Mäurer
ℝ2 are called parabolic if |∂K ∩ Fix τi|=1. Conditions are stated under which the existence of τ1, τ2 imply that ∂K is an ellipse.
Journal of Algebra | 1983
Helmut Mäurer
Let (ℝ2,ℝ[x]) denote the incidence structure consisting of the point set ℝ2 and the set {{(x, f(x)) ¦ x ∈ ℝ} ¦ f ∈ ℝ[x]} of blocks. It will be shown, that every automorphism of this geometry has the form (x, y) ↦ (ax + b, cy + d(x)), where a, b, c are real numbers with a · c ≠ 0 and where d is a real polynomial.
Geometriae Dedicata | 1987
Helmut Mäurer