Hemalatha Balaram
Jawaharlal Nehru Centre for Advanced Scientific Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hemalatha Balaram.
Structure | 1997
Sameer S. Velanker; Soumya S. Ray; Rajesh S. Gokhale; S Suma; Hemalatha Balaram; Padmanabhan Balaram; M. R. N. Murthy
BACKGROUND Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 A resolution. RESULTS The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences. In most TIMs the residue at position 183 is a glutamate but in PfTIM it is a leucine. This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM. CONCLUSIONS Although the human and Plasmodium enzymes share 42% amino acid sequence identity, several key differences suggest that PfTIM may turn out to be a potential drug target. We have identified a region which may be responsible for binding PfTIM to cytoskeletal elements or the band 3 protein of erythrocytes; attachment to the erythrocyte membrane may subsequently lead to the extracellular exposure of parts of the protein. This feature may be important in view of a recent report that patients suffering from P. falciparum malaria mount an antibody response to TIM leading to prolonged hemolysis. A second approach to drug design may be provided by the mutation of the largely conserved residue (Ser96) to phenylalanine in PfTIM. This difference may be of importance in designing specific active-site inhibitors against the enzyme. Finally, specific inhibition of PfTIM subunit assembly might be possible by targeting Cys13 at the dimer interface. The crystal structure of PfTIM provides a framework for new therapeutic leads.
Antimicrobial Agents and Chemotherapy | 2001
G. Nagaraj; M. V. Uma; M. S. Shivayogi; Hemalatha Balaram
ABSTRACT Malaria caused by Plasmodium falciparum is a major public health problem in the developing countries of the world. Clinical treatment of malaria has become complicated due to the occurrence of infections caused by drug resistant parasites. Secondary metabolites from fungi are an attractive source of chemotherapeutic agents. This work reports the isolation and in vitro antiplasmodial activities of peptide antibiotics of fungal origin. The three peptide antibiotics used in this study were efrapeptins, zervamicins, and antiamoebin. The high-performance liquid chromatography-purified peptides were characterized by nuclear magnetic resonance and mass spectral analysis. All three fungal peptides kill P. falciparum in culture with 50% inhibitory concentrations in the micromolar range. A possible mode of action of these peptide antibiotics on P. falciparum is presented.
FEBS Letters | 2001
S. Kumar Singh; Kapil Maithal; Hemalatha Balaram; Padmanabhan Balaram
Synthetic peptides corresponding to two distinct segments of the subunit interface of the homodimeric enzyme triosephosphate isomerase (residues 9–18, ANWKCNGTLE, peptide I; residues 68–79, KFGNGSYTGEVS, peptide II) from Plasmodium falciparum (PfTIM) have been investigated for their ability to act as inhibitors by interfering with the quaternary structure of the enzyme. An analog of peptide II containing cysteine at the site corresponding to position 74 and tyrosine at position 69 in the protein sequence KYGNGSCTGEVS (peptide III) was also investigated. A substantial fall in enzyme activity was observed following incubation of the enzyme with peptide II, whereas peptide I did not show any appreciable inhibition. The inhibitory effect was more pronounced on two mutants of PfTIM (Y74C and Y74G), both of which have reduced stability compared to the wild‐type protein due to an interface cavity. The IC50 value determined for peptide II is in the range of 0.6–0.8 μM. This study suggests that interface peptides of oligomeric enzymes can be used to inhibit dimeric enzymes by disrupting their native multimeric states and may provide lead structures for potential inhibitor design.
Molecular and Biochemical Parasitology | 1993
Jamuna Ranie; Vidya Prasanna Kumar; Hemalatha Balaram
A major supply of energy in the rapidly multiplying intraerythrocytic Plasmodium falciparum is from the glycolytic pathway. We have isolated the cDNA and genomic clones of the glycolytic enzyme, triosephosphate isomerase (TPI) by polymerase chain reaction (PCR). Degenerate oligonucleotides obtained by reverse translation of conserved polypeptide sequences derived from TPIs of other organisms, were used to prime PCR on P. falciparum DNA. The P. falciparum TPI gene is interrupted by a single intron which divides the coding region into two exons. The coding region encodes a protein of 248 amino acids which is of the same size as TPIs from other organisms and shares 42-45% homology with other known eukaryotic TPIs. On comparison with human TPI the catalytic domain was found to be highly conserved, while significant variations occurred at the other regions in the protein sequence. The P. falciparum TPI gene was cloned into the expression vector pTrc99A and hyperexpressed as an unfused protein in Escherichia coli. The 28-kDa protein was shown to be catalytically active.
Journal of Biological Chemistry | 2011
Vinay Bulusu; Vijay Jayaraman; Hemalatha Balaram
In aerobic respiration, the tricarboxylic acid cycle is pivotal to the complete oxidation of carbohydrates, proteins, and lipids to carbon dioxide and water. Plasmodium falciparum, the causative agent of human malaria, lacks a conventional tricarboxylic acid cycle and depends exclusively on glycolysis for ATP production. However, all of the constituent enzymes of the tricarboxylic acid cycle are annotated in the genome of P. falciparum, which implies that the pathway might have important, yet unidentified biosynthetic functions. Here we show that fumarate, a side product of the purine salvage pathway and a metabolic intermediate of the tricarboxylic acid cycle, is not a metabolic waste but is converted to aspartate through malate and oxaloacetate. P. falciparum-infected erythrocytes and free parasites incorporated [2,3-14C]fumarate into the nucleic acid and protein fractions. 13C NMR of parasites incubated with [2,3-13C]fumarate showed the formation of malate, pyruvate, lactate, and aspartate but not citrate or succinate. Further, treatment of free parasites with atovaquone inhibited the conversion of fumarate to aspartate, thereby indicating this pathway as an electron transport chain-dependent process. This study, therefore, provides a biosynthetic function for fumarate hydratase, malate quinone oxidoreductase, and aspartate aminotransferase of P. falciparum.
Molecular and Biochemical Parasitology | 2008
Subhra Prakash Chakrabarty; Yegnisettipalli Krishnaiah Saikumari; Monnanda P. Bopanna; Hemalatha Balaram
In Plasmodium falciparum, the causative agent of cerebral malaria, silent information regulator 2 (Sir2) has been implicated in pathogenesis through its role in var gene silencing. P. falciparum Sir2 (PfSir2) in addition to the catalytic core, has a 13 residue N-terminal and 4 residue C-terminal extension over the shorter Archaeoglobus fulgidus Sir2. In this paper, we highlight our studies aimed at understanding the kinetic mechanism of PfSir2 and the role of N- and C-terminal extensions in protein function and oligomerization. Bisubstrate kinetic analysis showed that PfSir2 exhibits a rapid equilibrium ordered sequential mechanism, with peptide binding preceding NAD(+). This study also reports on surfactin as a novel Sir2 inhibitor exhibiting competitive inhibition with respect to NAD(+) and uncompetitive inhibition with acetylated peptide. This inhibition pattern with surfactin provides further support for ordered binding of substrates. Surfactin was also found to be a potent inhibitor of intra-erythrocytic growth of P. falciparum with 50% inhibitory concentration in the low micromolar range. PfSir2, like the yeast homologs (yHst2 and Sir2p), is a trimer in solution. However, dissociation of trimer to monomers in the presence of NAD(+) is characteristic of the parasite enzyme. Oligomerization studies on N- and/or C-terminal deletion constructs of PfSir2 highlight the role of C-terminus of the protein in mediating homotrimerization. N-terminal deletion resulted in reduced catalytic efficiency although substrate affinity was not altered in the constructs. Interestingly, deletion of both the ends relaxed NAD(+) specificity.
FEBS Letters | 2003
Hosahudya N. Gopi; Gudihal Ravindra; Prajna P. Pal; Priyaranjan Pattanaik; Hemalatha Balaram; Padmanabhan Balaram
A set of designed internally quenched fluorescence peptide substrates has been used to probe the effects of insertion of β‐peptide bonds into peptide sequences. The test sequence chosen corresponds to a proteolytically susceptible site in hemoglobin α‐chain, residues 32–37. Fluorescence and mass spectral measurements demonstrate that the insertion of an β‐residues at the potential cleavage sites completely abolishes the action of proteases; in addition, the rate of cleavage of the peptide bond preceding the site of modification is also considerably reduced.
Biochimica et Biophysica Acta | 2009
Vinay Bulusu; Bharath Srinivasan; Monnanda P. Bopanna; Hemalatha Balaram
Adenylosuccinate lyase (ASL) catalyzes two distinct but chemically similar reactions in purine biosynthesis. The first, exclusive to the de novo pathway involves the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate and the second common to both de novo and the salvage pathways involves the cleavage of succinyl-adenosine monophosphate (SAMP) to AMP and fumarate. A detailed kinetic and catalytic mechanism of the recombinant His-tagged ASL from Plasmodium falciparum (PfASL) is presented here. Initial velocity kinetics, product inhibition studies and transient kinetics indicate a Uni-Bi rapid equilibrium ordered mechanism. Substrate and solvent isotope effect studies implicate the process of C(gamma)-N bond cleavage to be rate limiting. Interestingly, the effect of pH on k(cat) and k(cat)/K(m) highlight ionization of the base only in the enzyme substrate complex and not in the enzyme alone, thereby implicating the pivotal role of the substrate in the activation of the catalytic base. Site-directed mutagenesis implicates a key role for the conserved serine (S298) in catalysis. Despite the absence of a de novo pathway for purine synthesis and most importantly, the absence of other enzymes that can metabolise AICAR in P. falciparum, PfASL catalyzes the SAICAR cleavage reaction with kinetic parameters similar to those of SAMP reaction and binds AICAR with affinity similar to that of AMP. The presence of this catalytic feature allows the use of AICAR or its analogues as inhibitors of PfASL and hence, as novel putative anti-parasitic agents. In support of this, we do see a dose dependent inhibition of parasite growth in the presence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAriboside) with half-maximal inhibition at 167+/-5 microM.
Biochemical Journal | 2008
Javaid Yousuf Bhat; Brahmanaspati Ganapathi Shastri; Hemalatha Balaram
Plasmodium falciparum, the causative agent of the fatal form of malaria, synthesizes GMP primarily from IMP and, hence, needs active GMPS (GMP synthetase) for its survival. GMPS, a G-type amidotransferase, catalyses the amination of XMP to GMP with the reaction occurring in two domains, the GAT (glutamine amidotransferase) and ATPPase (ATP pyrophosphatase). The GAT domain hydrolyses glutamine to glutamate and ammonia, while the ATPPase domain catalyses the formation of the intermediate AMP-XMP from ATP and XMP. Co-ordination of activity across the two domains, achieved through channelling of ammonia from GAT to the effector domain, is the hallmark of amidotransferases. Our studies aimed at understanding the kinetic mechanism of PfGMPS (Plasmodium falciparum GMPS) indicated steady-state ordered binding of ATP followed by XMP to the ATPPase domain with glutamine binding in a random manner to the GAT domain. We attribute the irreversible, Ping Pong step seen in initial velocity kinetics to the release of glutamate before the attack of the adenyl-XMP intermediate by ammonia. Specific aspects of the overall kinetic mechanism of PfGMPS are different from that reported for the human and Escherichia coli enzymes. Unlike human GMPS, absence of tight co-ordination of activity across the two domains was evident in the parasite enzyme. Variations seen in the inhibition by nucleosides and nucleotide analogues between human GMPS and PfGMPS highlighted differences in ligand specificity that could serve as a basis for the design of specific inhibitors. The present study represents the first report on recombinant His-tagged GMPS from parasitic protozoa.
Journal of Biological Chemistry | 2003
Sampathkumar Parthasarathy; Kandiah Eaazhisai; Hemalatha Balaram; Padmanabhan Balaram; M. R. N. Murthy
Triose-phosphate isomerase, a key enzyme of the glycolytic pathway, catalyzes the isomerization of dihydroxy acetone phosphate and glyceraldehyde 3-phosphate. In this communication we report the crystal structure of Plasmodium falciparum triose-phosphate isomerase complexed to the inhibitor 2-phosphoglycerate at 1.1-Å resolution. The crystallographic asymmetric unit contains a dimeric molecule. The inhibitor bound to one of the subunits in which the flexible catalytic loop 6 is in the open conformation has been cleaved into two fragments presumably due to radiation damage. The cleavage products have been tentatively identified as 2-oxoglycerate and meta-phosphate. The intact 2-phosphoglycerate bound to the active site of the other subunit has been observed in two different orientations. The active site loop in this subunit is in both open and “closed” conformations, although the open form is predominant. Concomitant with the loop closure, Phe-96, Leu-167, and residues 208–211 (YGGS) are also observed in dual conformations in the B-subunit. Detailed comparison of the active-site geometry in the present case to the Saccharomyces cerevisiae triose-phosphate isomerase-dihydroxy acetone phosphate and Leishmania mexicana triose-phosphate isomerase-phosphoglycolate complexes, which have also been determined at atomic resolution, shows that certain interactions are common to the three structures, although 2-phosphoglycerate is neither a substrate nor a transition state analogue.
Collaboration
Dive into the Hemalatha Balaram's collaboration.
Jawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputsJawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputsJawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputsJawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputsJawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputs