Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hemant Agrawal is active.

Publication


Featured researches published by Hemant Agrawal.


Circulation Research | 2011

Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity

Susmita Sahoo; Ekaterina Klychko; Tina Thorne; Sol Misener; Kathryn M. Schultz; Meredith Millay; Aiko Ito; Ting Liu; Christine Kamide; Hemant Agrawal; Harris Perlman; Gangjian Qin; Raj Kishore; Douglas W. Losordo

Rationale: Transplantation of human CD34+ stem cells to ischemic tissues has been associated with reduced angina, improved exercise time, and reduced amputation rates in phase 2 clinical trials and has been shown to induce neovascularization in preclinical models. Previous studies have suggested that paracrine factors secreted by these proangiogenic cells are responsible, at least in part, for the angiogenic effects induced by CD34+ cell transplantation. Objective: Our objective was to investigate the mechanism of CD34+ stem cell–induced proangiogenic paracrine effects and to examine if exosomes, a component of paracrine secretion, are involved. Methods and Results: Exosomes collected from the conditioned media of mobilized human CD34+ cells had the characteristic size (40 to 90 nm; determined by dynamic light scattering), cup-shaped morphology (electron microscopy), expressed exosome-marker proteins CD63, phosphatidylserine (flow cytometry) and TSG101 (immunoblotting), besides expressing CD34+ cell lineage marker protein, CD34. In vitro, CD34+ exosomes replicated the angiogenic activity of CD34+ cells by increasing endothelial cell viability, proliferation, and tube formation on Matrigel. In vivo, the CD34+ exosomes stimulated angiogenesis in Matrigel plug and corneal assays. Interestingly, exosomes from CD34+ cells but not from CD34+ cell–depleted mononuclear cells had angiogenic activity. Conclusions: Our data demonstrate that human CD34+ cells secrete exosomes that have independent angiogenic activity both in vitro and in vivo. CD34+ exosomes may represent a significant component of the paracrine effect of progenitor cell transplantation for therapeutic angiogenesis.


Arthritis & Rheumatism | 2011

Local expression of interleukin-27 ameliorates collagen-induced arthritis

Sarah R. Pickens; Nathan D. Chamberlain; Michael V. Volin; Arthur M. Mandelin; Hemant Agrawal; Masanori Matsui; Takayuki Yoshimoto; Shiva Shahrara

OBJECTIVE To determine the mechanism of action of interleukin-27 (IL-27) against rheumatoid arthritis (RA). METHODS Adenovirus containing IL-27 transcript was constructed and was locally delivered into the ankles of mice with collagen-induced arthritis (CIA). Progression of arthritis was determined in treated and untreated mice by measuring ankle circumference and through histologic analysis. IL-17 and its downstream targets as well as cytokines promoting Th17 cell differentiation were quantified by enzyme-linked immunosorbent assay in CIA mouse ankles locally expressing adenoviral IL-27 as well as in control-treated mouse ankles. Ankles from both treatment groups were immunostained for neutrophil and monocyte migration (macrophages in the tissue). Finally, vascularization was quantified by histology and by determining ankle hemoglobin levels. RESULTS Ectopic expression of IL-27 in CIA mice ameliorated inflammation, lining hypertrophy, and bone erosion as compared with control-treated CIA mice. Serum and joint levels of IL-17 were significantly reduced in the IL-27-treated group compared with the control-treated group. Two of the main cytokines that induce Th17 cell differentiation and IL-17 downstream target molecules were greatly down-regulated in CIA mouse ankles receiving forced expression of IL-27. The control mice had higher levels of vascularization and monocyte trafficking than did mice ectopically expressing IL-27. CONCLUSION Our results suggest that increased levels of IL-27 relieve arthritis in CIA mouse ankles. This amelioration of arthritis involves a reduction in CIA mouse serum and joint levels of IL-17 and results in decreased IL-17-mediated monocyte recruitment and angiogenesis. Hence, the use of IL-27 may be a strategy for treatment of patients with RA.


American Journal of Respiratory and Critical Care Medicine | 2011

Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury

G. R. Scott Budinger; Gökhan M. Mutlu; Daniela Urich; Saul Soberanes; Leonard J. Buccellato; Keenan A. Hawkins; Sergio E. Chiarella; Kathryn A. Radigan; James Eisenbart; Hemant Agrawal; Sara K. Berkelhamer; Siegfried Hekimi; Jianke Zhang; Harris Perlman; Paul T. Schumacker; Manu Jain; Navdeep S. Chandel

RATIONALE Acute lung injury and the acute respiratory distress syndrome are characterized by increased lung oxidant stress and apoptotic cell death. The contribution of epithelial cell apoptosis to the development of lung injury is unknown. OBJECTIVES To determine whether oxidant-mediated activation of the intrinsic or extrinsic apoptotic pathway contributes to the development of acute lung injury. METHODS Exposure of tissue-specific or global knockout mice or cells lacking critical components of the apoptotic pathway to hyperoxia, a well-established mouse model of oxidant-induced lung injury, for measurement of cell death, lung injury, and survival. MEASUREMENTS AND MAIN RESULTS We found that the overexpression of SOD2 prevents hyperoxia-induced BAX activation and cell death in primary alveolar epithelial cells and prolongs the survival of mice exposed to hyperoxia. The conditional loss of BAX and BAK in the lung epithelium prevented hyperoxia-induced cell death in alveolar epithelial cells, ameliorated hyperoxia-induced lung injury, and prolonged survival in mice. By contrast, Cyclophilin D-deficient mice were not protected from hyperoxia, indicating that opening of the mitochondrial permeability transition pore is dispensable for hyperoxia-induced lung injury. Mice globally deficient in the BH3-only proteins BIM, BID, PUMA, or NOXA, which are proximal upstream regulators of BAX and BAK, were not protected against hyperoxia-induced lung injury suggesting redundancy of these proteins in the activation of BAX or BAK. CONCLUSIONS Mitochondrial oxidant generation initiates BAX- or BAK-dependent alveolar epithelial cell death, which contributes to hyperoxia-induced lung injury.


Journal of Immunology | 2011

Modulation of Dendritic Cell Differentiation in the Bone Marrow Mediates Sustained Immunosuppression after Polymicrobial Sepsis

Eva Pastille; Sonja Didovic; Daniela Brauckmann; Meenakshi Rani; Hemant Agrawal; F. Ulrich Schade; Yang Zhang; Stefanie B. Flohé

Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.


Arthritis & Rheumatism | 2010

Bim-Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis.

John C. Scatizzi; Jack Hutcheson; Richard M. Pope; Gary S. Firestein; Alisa E. Koch; Melissa Mavers; Avraham Smason; Hemant Agrawal; G. Kenneth Haines; Navdeep S. Chandel; Richard S. Hotchkiss; Harris Perlman

OBJECTIVE Rheumatoid arthritis (RA) is a destructive autoimmune disease characterized by an increased inflammation in the joint. Therapies that activate the apoptotic cascade may have potential for use in RA; however, few therapeutic agents fit this category. The purpose of this study was to examine the potential of Bim, an agent that mimics the action of Bcl-2 homology 3 (BH3) domain-only proteins that have shown success in preclinical studies of cancer, in the treatment of autoimmune disease. METHODS Synovial tissues from RA and osteoarthritis patients were analyzed for the expression of Bim and CD68 using immunohistochemistry. Macrophages from Bim(-/-) mice were examined for their response to lipopolysaccharide (LPS) using flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and immunoblotting. Bim(-/-) mice were stimulated with thioglycollate or LPS and examined for macrophage activation and cytokine production. Experimental arthritis was induced using the K/BxN serum-transfer model. A mimetic peptide corresponding to the BH3 domain of Bim (TAT-BH3) was administered as a prophylactic agent and as a therapeutic agent. Edema of the ankles and histopathologic analysis of ankle tissue sections were used to determine the severity of arthritis, its cellular composition, and the degree of apoptosis. RESULTS The expression of Bim was reduced in RA synovial tissue as compared with controls, particularly in macrophages. Bim(-/-) macrophages displayed elevated expression of markers of inflammation and secreted more interleukin-1beta following stimulation with LPS or thioglycollate. TAT-BH3 ameliorated arthritis development, reduced the number of myeloid cells in the joint, and enhanced apoptosis without inducing cytotoxicity. CONCLUSION These data demonstrate that BH3 mimetic therapy may have significant potential for the treatment of RA.


Blood | 2010

FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis

Qi Quan Huang; Harris Perlman; Zan Huang; Robert Birkett; Lixin Kan; Hemant Agrawal; Alexander V. Misharin; Sandeep Gurbuxani; John D. Crispino; Richard M. Pope

FLIP is a well-established suppressor of death receptor-mediated apoptosis. To define its essential in vivo role in myeloid cells, we generated and characterized mice with Flip conditionally deleted in the myeloid lineage. Myeloid specific Flip-deficient mice exhibited growth retardation, premature death, and splenomegaly with altered architecture and extramedullary hematopoiesis. They also displayed a dramatic increase of circulating neutrophils and multiorgan neutrophil infiltration. In contrast, although circulating inflammatory monocytes were also significantly increased, macrophages in the spleen, lymph nodes, and the peritoneal cavity were reduced. In ex vivo cultures, bone marrow progenitor cells failed to differentiate into macrophages when Flip was deleted. Mixed bone marrow chimera experiments using cells from Flip-deficient and wild-type mice did not demonstrate an inflammatory phenotype. These observations demonstrate that FLIP is necessary for macrophage differentiation and the homeostatic regulation of granulopoiesis.


Arthritis & Rheumatism | 2012

Cyclin-dependent kinase inhibitor p21, via its C-terminal domain, is essential for resolution of murine inflammatory arthritis.

Melissa Mavers; Carla M. Cuda; Alexander V. Misharin; Angelica K. Gierut; Hemant Agrawal; Evan W. Weber; Deborah V. Novack; G. Kenneth Haines; Dimitrios Balomenos; Harris Perlman

OBJECTIVE The mechanism responsible for persistent synovial inflammation in rheumatoid arthritis (RA) is unknown. Previously, we demonstrated that expression of the cyclin-dependent kinase inhibitor p21 is reduced in synovial tissue from RA patients compared to osteoarthritis patients and that p21 is a novel suppressor of the inflammatory response in macrophages. The present study was undertaken to investigate the role and mechanism of p21-mediated suppression of experimental inflammatory arthritis. METHODS Experimental arthritis was induced in wild-type or p21-/- (C57BL/6) mice, using the K/BxN serum-transfer model. Mice were administered p21 peptide mimetics as a prophylactic for arthritis development. Lipopolysaccharide-induced cytokine and signal transduction pathways in macrophages that were treated with p21 peptide mimetics were examined by Luminex-based assay, flow cytometry, or enzyme-linked immunosorbent assay. RESULTS Enhanced and sustained development of experimental inflammatory arthritis, associated with markedly increased numbers of macrophages and severe articular destruction, was observed in p21-/- mice. Administration of a p21 peptide mimetic suppressed activation of macrophages and reduced the severity of experimental arthritis in p21-intact mice only. Mechanistically, treatment with the p21 peptide mimetic led to activation of the serine/threonine kinase Akt and subsequent reduction of the activated isoform of p38 MAPK in macrophages. CONCLUSION These are the first reported data to reveal that p21 has a key role in limiting the activation response of macrophages in an inflammatory disease such as RA. Thus, targeting p21 in macrophages may be crucial for suppressing the development and persistence of RA.


Arthritis & Rheumatism | 2012

Requirement of myeloid cell–specific Fas expression for prevention of systemic autoimmunity in mice

Carla M. Cuda; Hemant Agrawal; Alexander V. Misharin; G. Kenneth Haines; Jack Hutcheson; Evan W. Weber; Joseph A. Schoenfeldt; Chandra Mohan; Richard M. Pope; Harris Perlman

OBJECTIVE The death receptor Fas is a critical mediator of the extrinsic apoptotic pathway, and its role in mediating lymphoproliferation has been extensively examined. The present study was undertaken to investigate the impact of myeloid cell-specific loss of Fas. METHODS Mice with Fas flanked by loxP sites (Fas(flox/flox) ) were crossed with mice expressing Cre under control of the murine lysozyme M gene promoter (Cre(LysM) ), which functions in mature lysozyme-expressing cells of the myelomonocytic lineage. The genotype for Cre(LysM) Fas(flox/flox) mice was verified by polymerase chain reaction and flow cytometric analysis. Flow cytometric analysis was also used to characterize myeloid, dendritic, and lymphoid cell distribution and activation in bone marrow, blood, and spleen. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure serum cytokine/chemokine and immunoglobulin levels. Renal damage or dysfunction was examined by immunohistochemical and immunofluorescence analysis. RESULTS Cre(LysM) Fas(flox/flox) mice exhibited a systemic lupus erythematosus (SLE)-like disease that included leukocytosis, splenomegaly, hypergammaglobulinemia, antinuclear autoantibody and proinflammatory cytokine production, and glomerulonephritis. Loss of Fas in myeloid cells increased levels of both Gr-1(low) and Gr-1(intermediate) blood monocytes and splenic macrophages and, in a paracrine manner, incited activation of conventional dendritic cells and lymphocytes in Cre(LysM) Fas(flox/flox) mice. CONCLUSION Taken together, these results suggest that loss of Fas in myeloid cells is sufficient to induce inflammatory phenotypes in mice, reminiscent of an SLE-like disease. Thus, Fas in myeloid cells may be considered a suppressor of systemic autoimmunity.


Journal of Experimental Medicine | 2017

Bim suppresses the development of SLE by limiting myeloid inflammatory responses

Fu Nien Tsai; Philip J. Homan; Hemant Agrawal; Alexander V. Misharin; Hiam Abdala-Valencia; G. Kenneth Haines; Salina Dominguez; Christina L. Bloomfield; Rana Saber; Anthony Chang; Chandra Mohan; Jack Hutcheson; Anne Davidson; G. R. Scott Budinger; Andrea Dorfleutner; Christian Stehlik; Deborah R. Winter; Carla M. Cuda; Harris Perlman

The Bcl-2 family is considered the guardian of the mitochondrial apoptotic pathway. We demonstrate that Bim acts as a molecular rheostat by controlling macrophage function not only in lymphoid organs but also in end organs, thereby preventing the break in tolerance. Mice lacking Bim in myeloid cells (LysMCreBimfl/fl) develop a systemic lupus erythematosus (SLE)–like disease that mirrors aged Bim−/− mice, including loss of marginal zone macrophages, splenomegaly, lymphadenopathy, autoantibodies (including anti-DNA IgG), and a type I interferon signature. LysMCreBimfl/fl mice exhibit increased mortality attributed to glomerulonephritis (GN). Moreover, the toll-like receptor signaling adaptor protein TRIF (TIR-domain–containing adapter-inducing interferon-&bgr;) is essential for GN, but not systemic autoimmunity in LysMCreBimfl/fl mice. Bim-deleted kidney macrophages exhibit a novel transcriptional lupus signature that is conserved within the gene expression profiles from whole kidney biopsies of patients with SLE. Collectively, these data suggest that the Bim may be a novel therapeutic target in the treatment of SLE.


Arthritis & Rheumatism | 2012

Requirement of myeloid cell-specific Fas expression for prevention of systemic autoimmunity in mice: Fas Acts in Myeloid Cells to Prevent Systemic Autoimmunity

Carla M. Cuda; Hemant Agrawal; Alexander V. Misharin; G. Kenneth Haines; Jack Hutcheson; Evan W. Weber; Joseph A. Schoenfeldt; Chandra Mohan; Richard M. Pope; Harris Perlman

OBJECTIVE The death receptor Fas is a critical mediator of the extrinsic apoptotic pathway, and its role in mediating lymphoproliferation has been extensively examined. The present study was undertaken to investigate the impact of myeloid cell-specific loss of Fas. METHODS Mice with Fas flanked by loxP sites (Fas(flox/flox) ) were crossed with mice expressing Cre under control of the murine lysozyme M gene promoter (Cre(LysM) ), which functions in mature lysozyme-expressing cells of the myelomonocytic lineage. The genotype for Cre(LysM) Fas(flox/flox) mice was verified by polymerase chain reaction and flow cytometric analysis. Flow cytometric analysis was also used to characterize myeloid, dendritic, and lymphoid cell distribution and activation in bone marrow, blood, and spleen. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure serum cytokine/chemokine and immunoglobulin levels. Renal damage or dysfunction was examined by immunohistochemical and immunofluorescence analysis. RESULTS Cre(LysM) Fas(flox/flox) mice exhibited a systemic lupus erythematosus (SLE)-like disease that included leukocytosis, splenomegaly, hypergammaglobulinemia, antinuclear autoantibody and proinflammatory cytokine production, and glomerulonephritis. Loss of Fas in myeloid cells increased levels of both Gr-1(low) and Gr-1(intermediate) blood monocytes and splenic macrophages and, in a paracrine manner, incited activation of conventional dendritic cells and lymphocytes in Cre(LysM) Fas(flox/flox) mice. CONCLUSION Taken together, these results suggest that loss of Fas in myeloid cells is sufficient to induce inflammatory phenotypes in mice, reminiscent of an SLE-like disease. Thus, Fas in myeloid cells may be considered a suppressor of systemic autoimmunity.

Collaboration


Dive into the Hemant Agrawal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Hutcheson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge