Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hemant Lata is active.

Publication


Featured researches published by Hemant Lata.


Physiology and Molecular Biology of Plants | 2009

Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. — an important medicinal plant

Hemant Lata; Suman Chandra; Ikhlas A. Khan; Mahmoud A. ElSohly

Cannabis sativa L. (Cannabaceae) is an important medicinal plant well known for its pharmacologic and therapeutic potency. Because of allogamous nature of this species, it is difficult to maintain its potency and efficacy if grown from the seeds. Therefore, chemical profile-based screening, selection of high yielding elite clones and their propagation using biotechnological tools is the most suitable way to maintain their genetic lines. In this regard, we report a simple and efficient method for the in vitro propagation of a screened and selected high yielding drug type variety of Cannabis sativa, MX-1 using synthetic seed technology. Axillary buds of Cannabis sativa isolated from aseptic multiple shoot cultures were successfully encapsulated in calcium alginate beads. The best gel complexation was achieved using 5 % sodium alginate with 50 mM CaCl2.2H2O. Regrowth and conversion after encapsulation was evaluated both under in vitro and in vivo conditions on different planting substrates. The addition of antimicrobial substance — Plant Preservative Mixture (PPM) had a positive effect on overall plantlet development. Encapsulated explants exhibited the best regrowth and conversion frequency on Murashige and Skoog medium supplemented with thidiazuron (TDZ 0.5 μM) and PPM (0.075 %) under in vitro conditions. Under in vivo conditions, 100 % conversion of encapsulated explants was obtained on 1:1 potting mix- fertilome with coco natural growth medium, moistened with full strength MS medium without TDZ, supplemented with 3 % sucrose and 0.5 % PPM. Plantlets regenerated from the encapsulated explants were hardened off and successfully transferred to the soil. These plants are selected to be used in mass cultivation for the production of biomass as a starting material for the isolation of THC as a bulk active pharmaceutical.


Plant Cell Tissue and Organ Culture | 2006

Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing

Hemant Lata; X.C. Li; B. Silva; Rita M. Moraes; L. Halda-Alija

The presence of latent bacteria is a serious problem in plant tissue cultures. While endophytes are generally beneficial to plants in situ, they may affect culture growth under the modified conditions in vitro. The present study was undertaken to identify and characterize endophytic bacteria associated with the medicinal plant Echinacea in tissue culture. Based on classical microbiological tests and 16S rRNA analyses, it was found that endophytic bacteria associated with aseptically micropropagated Echinacea plantlets are representatives of several genera, Acinetobacter, Bacillus, Pseudomonas, Wautersia (Ralstonia) and Stenotrophomonas. Based on TLC and HPLC analyses, we found that Pseudomonas stutzeri P3 strain produces plant hormone, auxin (indole-3-acetic acid, IAA). Antibiotic resistance was also assessed as a virulence factor. The majority of endophytic bacteria were resistant to the antibiotic kanamycin, but susceptible to chloramphenicol. Recommendations for propagating Echinaceain vitro cultures involve the addition of chloramphenicol, tetracycline, and ampicillin, antibiotics that cause no side effects on these plant species.


Annals of Allergy Asthma & Immunology | 2013

Characterization of Cannabis sativa allergens

Ajay P. Nayak; Brett J. Green; Gordon L. Sussman; Noam Berlin; Hemant Lata; Suman Chandra; Mahmoud A. ElSohly; Justin M. Hettick; Donald H. Beezhold

BACKGROUND Allergic sensitization to Cannabis sativa is rarely reported, but the increasing consumption of marijuana has resulted in an increase in the number of individuals who become sensitized. To date, little is known about the causal allergens associated with C sativa. OBJECTIVE To characterize marijuana allergens in different components of the C sativa plant using serum IgE from marijuana sensitized patients. METHODS Serum samples from 23 patients with a positive skin prick test result to a crude C sativa extract were evaluated. IgE reactivity was variable between patients and C sativa extracts. IgE reactivity to C sativa proteins in Western blots was heterogeneous and ranged from 10 to 70 kDa. Putative allergens derived from 2-dimensional gels were identified. RESULTS Prominent IgE reactive bands included a 23-kDa oxygen-evolving enhancer protein 2 and a 50-kDa protein identified to be the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. Additional proteins were identified in the proteomic analysis, including those from adenosine triphosphate synthase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and luminal binding protein (heat shock protein 70), suggesting these proteins are potential allergens. Deglycosylation studies helped refine protein allergen identification and demonstrated significant IgE antibodies against plant oligosaccharides that could help explain cross-reactivity. CONCLUSION Identification and characterization of allergens from C sativa may be helpful in further understanding allergic sensitization to this plant species.


Planta Medica | 2010

High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L.

Hemant Lata; Suman Chandra; Ikhlas A. Khan; Mahmoud A. ElSohly

An efficient in vitro propagation protocol for rapidly producing Cannabis sativa plantlets from young leaf tissue was developed. Using gas chromatography-flame ionization detection (GC-FID), high THC yielding elite female clone of a drug-type CANNABIS variety (MX) was screened and its vegetatively propagated clones were used for micropropagation. Calli were induced from leaf explant on Murashige and Skoog medium supplemented with different concentrations (0.5, 1.0, 1.5, and 2.0 µM) of indole- 3-acetic acid (IAA), indole- 3- butyric acid (IBA), naphthalene acetic acid (NAA), and 2,4-dichlorophenoxy-acetic acid (2,4-D) in combination with 1.0 µM of thidiazuron (TDZ) for the production of callus. The optimum callus growth and maintenance was in 0.5 µM NAA plus 1.0 µM TDZ. The two-month-old calli were subcultured to MS media containing different concentrations of cytokinins (BAP, KN, TDZ). The rate of shoot induction and proliferation was highest in 0.5 µM TDZ. Of the various auxins (IAA, IBA, and NAA) tested, regenerated shoots rooted best on half strength MS medium (1/2 - MS) supplemented with 2.5 µM IBA. The rooted plantlets were successfully established in soil and grown to maturity with no gross variations in morphology and cannabinoids content at a survival rate of 95 % in the indoor growroom.


Planta Medica | 2010

Assessment of the genetic stability of micropropagated plants of Cannabis sativa by ISSR markers.

Hemant Lata; Suman Chandra; Natascha Techen; Ikhlas A. Khan; Mahmoud A. ElSohly

Inter-simple sequence repeat (ISSR) markers were used to evaluate the genetic stability of the micropropagated plants of Cannabis sativa over 30 passages in culture and hardening in soil for 8 months. A total of 15 ISSR primers resulted in 115 distinct and reproducible bands. All the ISSR profiles from micropropagated plants were monomorphic and comparable to mother plants, confirming the genetic stability among clones and mother plants. Chemical analysis of cannabinoids, using gas chromatography/flame ionization detection (GC/FID), was done to further confirm whether the qualitative and quantitative differences in the major secondary metabolites exist between the mother plant and micropropagated plants. Six major cannabinoids - Delta(9)-THC, THCV, CBD, CBC, CBG, and CBN - were identified and compared with the mother plant. Our results clearly showed a similar cannabinoid profile and insignificant differences in THC content between the two types of plants. These results suggest that the micropropagation protocol developed by us for rapid IN VITRO multiplication is appropriate and applicable for clonal mass propagation of C. SATIVA.


Planta Medica | 2010

Assessment of cannabinoids content in micropropagated plants of Cannabis sativa and their comparison with conventionally propagated plants and mother plant during developmental stages of growth.

Suman Chandra; Hemant Lata; Zlatko Mehmedic; Ikhlas A. Khan; Mahmoud A. ElSohly

Gas chromatography-flame ionization detection (GC-FID) was used to assess the chemical profile and quantification of cannabinoids to identify the differences, if existing, in the chemical constituents of in vitro propagated plants (IVP), conventionally grown plants (VP) and indoor grown mother plants (MP-Indoor) of a high THC yielding variety of Cannabis sativa L. during different developmental stages of growth. In general, THC content in all groups increased with plant age up to a highest level during the budding stage where the THC content reached a plateau before the onset of senescence. The pattern of changes observed in the concentration of other cannabinoids content with plants age has followed a similar trend in all groups of plants. Qualitatively, cannabinoids profiles obtained using GC-FID, in MP-indoor, VP and IVP plants were found to be similar to each other and to that of the field grown mother plant (MP field) of C. sativa. Minor differences observed in cannabinoids concentration within and among the groups were not found to be statistically significant. Our results confirm the clonal fidelity of IVP plants of C. sativa and suggest that the biochemical mechanism used in this study to produce the micropropagated plants does not affect the metabolic content and can be used for the mass propagation of true to type plants of this species for commercial pharmaceutical use.


Analytical and Bioanalytical Chemistry | 2009

Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system

Maria Mendoza; DeEtta Mills; Hemant Lata; Suman Chandra; Mahmoud A. ElSohly; José R. Almirall

Cannabis sativa is the most frequently used of all illicit drugs in the USA. Cannabis has been used throughout history for its stems in the production of hemp fiber, seed for oil and food, and buds and leaves as a psychoactive drug. Short tandem repeats (STRs) were chosen as molecular markers owing to their distinct advantages over other genetic methods. STRs are codominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power, and can be multiplexed. In this study, six STR markers previously described for C. sativa were multiplexed into one reaction. The multiplex reaction was able to individualize 98 cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 states of the USA) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single-reaction sixplex and apply it to the analysis of almost 100 cannabis samples of known geographic origin.


Evidence-based Complementary and Alternative Medicine | 2014

Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study

Suman Chandra; Shabana I. Khan; Bharathi Avula; Hemant Lata; Min Hye Yang; Mahmoud A. ElSohly; Ikhlas A. Khan

A comparison of the product yield, total phenolics, total flavonoids, and antioxidant properties was done in different leafy vegetables/herbs (basil, chard, parsley, and red kale) and fruit crops (bell pepper, cherry tomatoes, cucumber, and squash) grown in aeroponic growing systems (AG) and in the field (FG). An average increase of about 19%, 8%, 65%, 21%, 53%, 35%, 7%, and 50% in the yield was recorded for basil, chard, red kale, parsley, bell pepper, cherry tomatoes, cucumber, and squash, respectively, when grown in aeroponic systems, compared to that grown in the soil. Antioxidant properties of AG and FG crops were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant (CAA) assays. In general, the study shows that the plants grown in the aeroponic system had a higher yield and comparable phenolics, flavonoids, and antioxidant properties as compared to those grown in the soil.


Physiology and Molecular Biology of Plants | 2008

Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions

Suman Chandra; Hemant Lata; Ikhlas A. Khan; Mahmoud A. ElSohly

Effect of different photosynthetic photon flux densities (0, 500, 1000, 1500 and 2000 μmol m−2s−1), temperatures (20, 25, 30, 35 and 40 °C) and CO2 concentrations (250, 350, 450, 550, 650 and 750 μmol mol−1) on gas and water vapour exchange characteristics of Cannabis sativa L. were studied to determine the suitable and efficient environmental conditions for its indoor mass cultivation for pharmaceutical uses. The rate of photosynthesis (PN) and water use efficiency (WUE) of Cannabis sativa increased with photosynthetic photon flux densities (PPFD) at the lower temperatures (20–25 °C). At 30 °C, PN and WUE increased only up to 1500 μmol m−2s−1 PPFD and decreased at higher light levels. The maximum rate of photosynthesis (PN max) was observed at 30 °C and under 1500 μmol m−2s−1 PPFD. The rate of transpiration (E) responded positively to increased PPFD and temperature up to the highest levels tested (2000 μmol m−2s−1 and 40 °C). Similar to E, leaf stomatal conductance (gs) also increased with PPFD irrespective of temperature. However, gs increased with temperature up to 30 °C only. Temperature above 30 °C had an adverse effect on gs in this species. Overall, high temperature and high PPFD showed an adverse effect on PN and WUE. A continuous decrease in intercellular CO2 concentration (Ci) and therefore, in the ratio of intercellular CO2 to ambient CO2 concentration (Ci/Ca) was observed with the increase in temperature and PPFD. However, the decrease was less pronounced at light intensities above 1500 μmol m−2s−1. In view of these results, temperature and light optima for photosynthesis was concluded to be at 25–30 °C and ∼1500 μmol m−2s−1 respectively. Furthermore, plants were also exposed to different concentrations of CO2 (250, 350, 450, 550, 650 and 750 μmol mol−1) under optimum PPFD and temperature conditions to assess their photosynthetic response. Rate of photosynthesis, WUE and Ci decreased by 50 %, 53 % and 10 % respectively, and Ci/Ca, E and gs increased by 25 %, 7 % and 3 % respectively when measurements were made at 250 μmol mol-1 as compared to ambient CO2 (350 μmol mol−1) level. Elevated CO2 concentration (750 μmol mol−1) suppressed E and gs ∼ 29% and 42% respectively, and stimulated PN, WUE and Ci by 50 %, 111 % and 115 % respectively as compared to ambient CO2 concentration. The study reveals that this species can be efficiently cultivated in the range of 25 to 30 °C and ∼1500 μmol m−2s−1 PPFD. Furthermore, higher PN, WUE and nearly constant Ci/Ca ratio under elevated CO2 concentrations in C. sativa, reflects its potential for better survival, growth and productivity in drier and CO2 rich environment.


Planta Medica | 2010

Genetic identification of female Cannabis sativa plants at early developmental stage.

Natascha Techen; Suman Chandra; Hemant Lata; Mahmoud A. ElSohly; Ikhlas A. Khan

Sequence-characterized amplified region (SCAR) markers were used to identify female plants at an early developmental stage in four different varieties of Cannabis sativa. Using the cetyl trimethylammonium bromide (CTAB) method, DNA was isolated from two-week-old plants of three drug-type varieties (Terbag W1, Terbag K2, and Terbag MX) and one fiber-type variety (Terbag Fedora A7) of C. sativa grown under controlled environmental conditions through seeds. Attempts to use MADC2 (male-associated DNA from Cannabis sativa) primers as a marker to identify the sex of Cannabis sativa plants were successful. Amplification of genomic DNA using MADC2-F and MADC2-R primers produced two distinct fragments, one with a size of approximately 450 bp for female plants and one for male plants with a size of approximately 300 bp. After harvesting the tissues for DNA extraction, plants were subjected to a flowering photoperiod (i.e., 12-h light cycle), and the appearance of flowers was compared with the DNA analysis. The results of the molecular analysis were found to be concordant with the appearance of male or female flowers. The results of this study represent a quick and reliable technique for the identification of sex in Cannabis plants using SCAR markers at a very early developmental stage.

Collaboration


Dive into the Hemant Lata's collaboration.

Top Co-Authors

Avatar

Ikhlas A. Khan

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Suman Chandra

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita M. Moraes

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Natascha Techen

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Ebru Bedir

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Zlatko Mehmedic

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

David S. Pasco

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Nirmal Pugh

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge