Hendrik Drachsler
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hendrik Drachsler.
IEEE Transactions on Learning Technologies | 2012
Katrien Verbert; Nikos Manouselis; Xavier Ochoa; Martin Wolpers; Hendrik Drachsler; Ivana Bosnić; Erik Duval
Recommender systems have been researched extensively by the Technology Enhanced Learning (TEL) community during the last decade. By identifying suitable resources from a potentially overwhelming variety of choices, such systems offer a promising approach to facilitate both learning and teaching tasks. As learning is taking place in extremely diverse and rich environments, the incorporation of contextual information about the user in the recommendation process has attracted major interest. Such contextualization is researched as a paradigm for building intelligent systems that can better predict and anticipate the needs of users, and act more efficiently in response to their behavior. In this paper, we try to assess the degree to which current work in TEL recommender systems has achieved this, as well as outline areas in which further work is needed. First, we present a context framework that identifies relevant context dimensions for TEL applications. Then, we present an analysis of existing TEL recommender systems along these dimensions. Finally, based on our survey results, we outline topics on which further research is needed.
Recommender Systems Handbook | 2011
Nikos Manouselis; Hendrik Drachsler; Riina Vuorikari; Hans Hummel; Rob Koper
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H. G. K., & Koper, R. (2011). Recommender Systems in Technology Enhanced Learning. In P. B. Kantor, F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 387-415). Berlin: Springer.
The international journal of learning | 2008
Hendrik Drachsler; Hans G. K. Hummel; Rob Koper
This article argues that there is a need for Personal Recommender Systems (PRSs) in Learning Networks (LNs) in order to provide learners with advice on the suitable learning activities to follow. LNs target lifelong learners in any learning situation, at all educational levels and in all national contexts. They are community-driven because every member is able to contribute to the learning material. Existing Recommender Systems (RS) and recommendation techniques used for consumer products and other contexts are assessed on their suitability for providing navigational support in an LN. The similarities and differences are translated into specific requirements for learning and specific requirements for recommendation techniques. The article focuses on the use of memory-based recommendation techniques, which calculate recommendations based on the current data set. We propose a combination of memory-based recommendation techniques that appear suitable to realise personalised recommendation on learning activities in the context of e-learning. An initial model for the design of such systems in LNs and a roadmap for their further development are presented.
learning analytics and knowledge | 2011
Katrien Verbert; Hendrik Drachsler; Nikos Manouselis; Martin Wolpers; Riina Vuorikari; Erik Duval
In the world of recommender systems, it is a common practice to use public available datasets from different application environments (e.g. MovieLens, Book-Crossing, or Each-Movie) in order to evaluate recommendation algorithms. These datasets are used as benchmarks to develop new recommendation algorithms and to compare them to other algorithms in given settings. In this paper, we explore datasets that capture learner interactions with tools and resources. We use the datasets to evaluate and compare the performance of different recommendation algorithms for learning. We present an experimental comparison of the accuracy of several collaborative filtering algorithms applied to these TEL datasets and elaborate on implicit relevance data, such as downloads and tags, that can be used to improve the performance of recommendation algorithms.
Archive | 2012
Nikos Manouselis; Hendrik Drachsler; Katrien Verbert; Erik Duval
Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.
european conference on technology enhanced learning | 2009
Hendrik Drachsler; Dries Pecceu; Tanja Arts; Edwin Hutten; Lloyd Rutledge; Peter Van Rosmalen; Hans G. K. Hummel; Rob Koper
The following article presents a Mash-Up Personal Learning Environment called ReMashed that recommends learning resources from emerging information of a Learning Network. In ReMashed learners can specify certain Web2.0 services and combine them in a Mash-Up Personal Learning Environment. Learners can rate information from an emerging amount of Web2.0 information of a Learning Network and train a recommender system for their particular needs. ReMashed therefore has three main objectives: 1. to provide a recommender system for Mash-up Personal Learning Environments to learners, 2. to offer an environment for testing new recommendation approaches and methods for researchers, and 3. to create informal user-generated content data sets that are needed to evaluate new recommendation algorithms for learners in informal Learning Networks.
Recommender Systems Handbook | 2015
Hendrik Drachsler; Katrien Verbert; Olga C. Santos; Nikos Manouselis
This chapter presents an analysis of recommender systems in Technology-Enhanced Learning along their 15 years existence (2000–2014). All recommender systems considered for the review aim to support educational stakeholders by personalising the learning process. In this meta-review 82 recommender systems from 35 different countries have been investigated and categorised according to a given classification framework. The reviewed systems have been classified into seven clusters according to their characteristics and analysed for their contribution to the evolution of the RecSysTEL research field. Current challenges have been identified to lead the work of the forthcoming years.
conference on recommender systems | 2010
Hendrik Drachsler; Toine Bogers; Riina Vuorikari; Katrien Verbert; Erik Duval; Nikos Manouselis; Guenter Beham; Stephanie Lindstaedt; Hermann Stern; Martin Friedrich; Martin Wolpers
This paper raises the issue of missing data sets for recommender systems in Technology Enhanced Learning that can be used as benchmarks to compare different recommendation approaches. It discusses how suitable data sets could be created according to some initial suggestions, and investigates a number of steps that may be followed in order to develop reference data sets that will be adopted and reused within a scientific community. In addition, policies are discussed that are needed to enhance sharing of data sets by taking into account legal protection rights. Finally, an initial elaboration of a representation and exchange format for sharable TEL data sets is carried out. The paper concludes with future research needs.
The international journal of learning | 2007
Hans G. K. Hummel; Bert van den Berg; Adriana Berlanga; Hendrik Drachsler; José Janssen; Rob Nadolski; Rob Koper
Lifelong learners who select learning activities to attain certain learning goals need to know which are suitable and in which sequence they should be performed. Learners need support in this way-finding process, and we argue that this could be provided by using Personalised Recommender Systems (PRSs). To enable personalisation, collaborative filtering could use information about learners and learning activities, since their alignment contributes to learning efficiency. A model for way-finding presents personalised recommendations in relation to information about learning goals, learning activities and learners. A PRS has been developed according to this model, and recommends to learners the best next learning activities. Both model and system combine social-based (i.e., completion data from other learners) and information-based (i.e., metadata from learner profiles and learning activities) approaches to recommend the best next learning activity to be completed.
learning analytics and knowledge | 2012
Hendrik Drachsler; Wolfgang Greller
While there is currently much buzz about the new field of learning analytics [19] and the potential it holds for benefiting teaching and learning, the impression one currently gets is that there is also much uncertainty and hesitation, even extending to scepticism. A clear common understanding and vision for the domain has not yet formed among the educator and research community. To investigate this situation, we distributed a stakeholder survey in September 2011 to an international audience from different sectors of education. The findings provide some further insights into the current level of understanding and expectations toward learning analytics among stakeholders. The survey was scaffolded by a conceptual framework on learning analytics that was developed based on a recent literature review. It divides the domain of learning analytics into six critical dimensions. The preliminary survey among 156 educational practitioners and researchers mostly from the higher education sector reveals substantial uncertainties in learning analytics. In this article, we first briefly introduce the learning analytics framework and its six domains that formed the backbone structure to our survey. Afterwards, we describe the method and key results of the learning analytics questionnaire and draw further conclusions for the field in research and practice. The article finishes with plans for future research on the questionnaire and the publication of both data and the questions for others to utilize.