Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hendrik Hildebrandt is active.

Publication


Featured researches published by Hendrik Hildebrandt.


Monthly Notices of the Royal Astronomical Society | 2012

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey

Catherine Heymans; Ludovic Van Waerbeke; Lance Miller; Thomas Erben; Hendrik Hildebrandt; Henk Hoekstra; Thomas D. Kitching; Y. Mellier; Patrick Simon; Christopher Bonnett; Jean Coupon; Liping Fu; Joachim Harnois-Déraps; Michael J. Hudson; Martin Kilbinger; K. Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Edo van Uitert; Sanaz Vafaei; Malin Velander

We present the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) that accurately determines a weak gravitational lensing signal from the full 154 deg^2 of deep multicolour data obtained by the CFHT Legacy Survey. Weak gravitational lensing by large-scale structure is widely recognized as one of the most powerful but technically challenging probes of cosmology. We outline the CFHTLenS analysis pipeline, describing how and why every step of the chain from the raw pixel data to the lensing shear and photometric redshift measurement has been revised and improved compared to previous analyses of a subset of the same data. We present a novel method to identify data which contributes a non-negligible contamination to our sample and quantify the required level of calibration for the survey. Through a series of cosmology-insensitive tests we demonstrate the robustness of the resulting cosmic shear signal, presenting a science-ready shear and photometric redshift catalogue for future exploitation.


Monthly Notices of the Royal Astronomical Society | 2013

CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments

Catherine Heymans; Emma Grocutt; Alan Heavens; Martin Kilbinger; Thomas D. Kitching; Fergus Simpson; Jonathan Benjamin; Thomas Erben; Hendrik Hildebrandt; Henk Hoekstra; Y. Mellier; Lance Miller; Ludovic Van Waerbeke; Michael L. Brown; Jean Coupon; Liping Fu; Joachim Harnois-Déraps; Michael J. Hudson; Konrad Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Sanaz Vafaei; Malin Velander

We present a finely-binned tomographic weak lensing analysis of the Canada-FranceHawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm = 0:70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1:5 < < 35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum 8 = 0:799 0:015 and the matter density parameter m = 0:271 0:010 for a flat CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = 1:02 0:09. We also provide constraints for curved CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.


Monthly Notices of the Royal Astronomical Society | 2013

CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey - imaging data and catalogue products

Thomas Erben; Hendrik Hildebrandt; L. Miller; L. van Waerbeke; Catherine Heymans; Henk Hoekstra; T. D. Kitching; Y. Mellier; Jonathan Benjamin; Chris Blake; Christopher Bonnett; O. Cordes; Jean Coupon; Liping Fu; R. Gavazzi; Bryan R. Gillis; E. Grocutt; Stephen Gwyn; K. Holhjem; M. J. Hudson; M. Kilbinger; K. Kuijken; Martha Milkeraitis; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Patrick Simon; M. Smit; O. Toader; Sanaz Vafaei

We present data products from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u*g′r′i′z′. The scientific aims of the CFHTLenS team are weak gravitational lensing studies supported by photometric redshift estimates for the galaxies. This paper presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60 and 70 mas with respect to Sloan Digital Sky Survey (SDSS) data, and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion of the order of 0.01–0.03 mag for g′r′i′z′ and about 0.04 mag for u* with respect to SDSS sources down to i_(SDSS) ≤ 21. We demonstrate in accompanying papers that our data meet necessary requirements to fully exploit the survey for weak gravitational lensing analyses in connection with photometric redshift studies. In the spirit of the CFHTLS, all our data products are released to the astronomical community via the Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies.


Monthly Notices of the Royal Astronomical Society | 2013

CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing

Martin Kilbinger; Liping Fu; Catherine Heymans; Fergus Simpson; Jonathan Benjamin; Thomas Erben; Joachim Harnois-Déraps; Henk Hoekstra; Hendrik Hildebrandt; Thomas D. Kitching; Y. Mellier; Lance Miller; Ludovic Van Waerbeke; K. Benabed; Christopher Bonnett; Jean Coupon; Michael J. Hudson; Konrad Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; Sanaz Vafaei; Malin Velander

We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg^2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-linear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ_8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain σ_8(Ω_m/0.27)0.6 = 0.79 ± 0.03. We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ω_m = 0.283 ± 0.010 and σ_8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ω_m = 0.27 ± 0.03, σ_8 = 0.83 ± 0.04, w0 = −1.10 ± 0.15 and Ω_K = 0.006^(+0.006)_(− 0.004). We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model.


Monthly Notices of the Royal Astronomical Society | 2013

Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

L. Miller; Catherine Heymans; T. D. Kitching; L. van Waerbeke; Thomas Erben; Hendrik Hildebrandt; Henk Hoekstra; Y. Mellier; Barnaby Rowe; Jean Coupon; J. P. Dietrich; Liping Fu; Joachim Harnois-Déraps; M. J. Hudson; M. Kilbinger; K. Kuijken; Tim Schrabback; Elisabetta Semboloni; Sanaz Vafaei; Malin Velander

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada–France–Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg^2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i′ band to a depth i′_(AB) < 24.7, for galaxies with signal-to-noise ratio ν_(SN) ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the methods accuracy and to derive an empirical correction for the effects of noise bias.


Astronomische Nachrichten | 2005

GaBoDS: The Garching-Bonn Deep Survey. IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESO Wide-Field Imager

Thomas Erben; Mischa Schirmer; J. P. Dietrich; O. Cordes; L. Haberzettl; Marco Hetterscheidt; Hendrik Hildebrandt; O. Schmithuesen; Peter Schneider; Patrick Simon; E. Deul; R. N. Hook; Nick Kaiser; M. Radovich; C. Benoist; M. Nonino; L. F. Olsen; I. Prandoni; R. Wichmann; S. Zaggia; Dominik J. Bomans; R.-J. Dettmar; J. M. Miralles

We present our image processing system for the reduction of optical imaging data from multi-chip cameras. In the framework of the Garching Bonn Deep Survey (GaBoDS; Schirmer et al. 2003) consisting of about 20 square degrees of high-quality data from WFI@MPG/ESO 2.2m, our group developed an imaging pipeline for the homogeneous and efficient processing of thislarge data set. Having weak gravitational lensing as the main science driver, our algorithms are optimised to produce deep co-added mosaics from individual exposures obtained from empty field observations. However, the modular design of our pipeline allows an easy adaption to different scientific applications. Our system has already been ported to a large variety of optical instruments and its products have been used in various scientific contexts. In this paper we give a thorough description of the algorithms used and a careful evaluation of the accuracies reached. This concerns the removal of the instrumental signature, the astrometric alignment, photometric calibration and the characterisation of final co-added mosaics. In addition we give a more general overview on the image reduction process and comment on observing strategies where they have significant influence on the data quality.


Monthly Notices of the Royal Astronomical Society | 2012

CFHTLenS: Improving the quality of photometric redshifts with precision photometry

Hendrik Hildebrandt; T. Erben; K. Kuijken; L. van Waerbeke; Catherine Heymans; J. Coupon; Jonathan Benjamin; Christopher Bonnett; Liping Fu; Henk Hoekstra; Thomas D. Kitching; Y. Mellier; L. Miller; Malin Velander; M. J. Hudson; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni; N. Benítez

Here we present the results of various approaches to measure accurate colours and photometric redshifts (photo-z’s) from wide-field imaging data. We use data from the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS) which have been re- processed by the CFHT Lensing Survey (CFHTLenS) team in order to carry out a number of weak gravitational lensing studies. An emphasis is put on the correction of systematic effects in the photo-z’s arising from the different Point Spread Functions (PSF) in the five optical bands. Different ways of correcting these effects are discussed and the resulting photo-z accuracies are quantified by comparing the photo-z’s to large spectroscopic redshift (spec-z) data sets. Careful homogenisation of the PSF between bands leads to increased overall accuracy of photo-z’s. The gain is particularly pronounced at fainter magnitudes where galaxies are smaller and flux measurements are affected more by PSF-effects. We also study possible re- calibrations of the photometric zeropoints (ZPs) with the help of galaxies with known spec-z’s. We find that if PSF-effects are properly taken into account, a re-calibration of the ZPs becomes much less important suggesting that previous such re-calibrations described in the literature could in fact be mostly corrections for PSF-effects rather than corrections for real inaccuracies in the ZPs. The implications of this finding for future surveys like KiDS, DES, LSST, or Euclid are mixed. On the one hand, ZP re-calibrations with spec-z’s might not be as accurate as previously thought. On the other hand, careful PSF homogenisation might provide a way out and yield accurate, homogeneous photometry without the need for full spectroscopic coverage. This is the first paper in a series describing the technical aspects of CFHTLenS. (abridged)


Monthly Notices of the Royal Astronomical Society | 2014

CFHTLenS: The relation between galaxy dark matter haloes and baryons from weak gravitational lensing

Malin Velander; Edo van Uitert; Henk Hoekstra; Jean Coupon; Thomas Erben; Catherine Heymans; Hendrik Hildebrandt; Thomas D. Kitching; Y. Mellier; Lance Miller; Ludovic Van Waerbeke; Christopher Bonnett; Liping Fu; S. Giodini; Michael J. Hudson; Konrad Kuijken; Barnaby Rowe; Tim Schrabback; Elisabetta Semboloni

We present a study of the relation between dark matter halo mass and the baryonic content of their host galaxies, quantified through galaxy luminosit y and stellar mass. Our investigation uses 154deg 2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing signal around our galaxies we employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction . Our analysis is limited to lenses at redshifts between 0.2 and 0.4, split into a red and a blue sa mple. We express the relationship between dark matter halo mass and baryonic observable as a power law with pivot points of 10 11 h −2


Monthly Notices of the Royal Astronomical Society | 2015

Gravitational lensing analysis of the Kilo-Degree Survey

Konrad Kuijken; Catherine Heymans; Hendrik Hildebrandt; Reiko Nakajima; Thomas Erben; Jelte T. A. de Jong; Massimo Viola; Ami Choi; Henk Hoekstra; Lance Miller; Edo van Uitert; Alexandra Amon; Chris Blake; Margot M. Brouwer; Axel Buddendiek; Ian Fenech Conti; Martin Eriksen; A. Grado; Joachim Harnois-Déraps; Ewout Helmich; Ricardo Herbonnet; Nancy Irisarri; Thomas D. Kitching; Dominik Klaes; Francesco La Barbera; N. R. Napolitano; M. Radovich; Peter Schneider; Cristóbal Sifón; Gert Sikkema

The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.


The Astrophysical Journal | 2012

Tracing the Star-formation-Density Relation to z ~ 2

Ryan F. Quadri; Rik J. Williams; Marijn Franx; Hendrik Hildebrandt

Recent work has shown that the star formation (SF) density relation—in which galaxies with low SF rates are preferentially found in dense environments—is still in place at z ~ 1, but the situation becomes less clear at higher redshifts. We use mass-selected samples drawn from the UKIDSS Ultra-Deep Survey to show that galaxies with quenched SF tend to reside in dense environments out to at least z ~ 1.8. Over most of this redshift range we are able to demonstrate that this SF-density relation holds even at fixed stellar mass. The environmental quenching of SF appears to operate with similar efficiency on all galaxies regardless of stellar mass. Nevertheless, the environment plays a greater role in the buildup of the red sequence at lower masses, whereas other quenching processes dominate at higher masses. In addition to a statistical analysis of environmental densities, we investigate a cluster at z = 1.6, and show that the central region has an elevated fraction of quiescent objects relative to the field. Although the uncertainties are large, the environmental quenching efficiency in this cluster is consistent with that of galaxy groups and clusters at z ~ 0. In this work we rely on photometric redshifts and describe some of the pitfalls that large redshift errors can present.

Collaboration


Dive into the Hendrik Hildebrandt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ami Choi

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge