Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hendrik W. van Veen is active.

Publication


Featured researches published by Hendrik W. van Veen.


Microbiology and Molecular Biology Reviews | 2000

Molecular Properties of Bacterial Multidrug Transporters

M Putman; Hendrik W. van Veen; Wil N. Konings

SUMMARY One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.


The EMBO Journal | 2000

The homodimeric ATP‐binding cassette transporter LmrA mediates multidrug transport by an alternating two‐site (two‐cylinder engine) mechanism

Hendrik W. van Veen; Abelardo Margolles; Michael Müller; Christopher F. Higgins; Wil N. Konings

The bacterial LmrA protein and the mammalian multidrug resistance P‐glycoprotein are closely related ATP‐binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated, and by which ATP hydrolysis is coupled to drug transport, are not known. Based on equilibrium binding experiments, photoaffinity labeling and drug transport assays, we conclude that homodimeric LmrA mediates drug transport by an alternating two‐site transport (two‐cylinder engine) mechanism. The transporter possesses two drug‐binding sites: a transport‐competent site on the inner membrane surface and a drug‐release site on the outer membrane surface. The interconversion of these two sites, driven by the hydrolysis of ATP, occurs via a catalytic transition state intermediate in which the drug transport site is occluded. The mechanism proposed for LmrA may also be relevant for P‐glycoprotein and other ABC transporters.


Journal of Bacteriology | 2001

Hop Resistance in the Beer Spoilage Bacterium Lactobacillus brevis Is Mediated by the ATP-Binding Cassette Multidrug Transporter HorA

Kanta Sakamoto; Abelardo Margolles; Hendrik W. van Veen; Wil N. Konings

Lactobacillus brevis is a major contaminant of spoiled beer. The organism can grow in beer in spite of the presence of antibacterial hop compounds that give the beer a bitter taste. The hop resistance in L. brevis is, at least in part, dependent on the expression of the horA gene. The deduced amino acid sequence of HorA is 53% identical to that of LmrA, an ATP-binding cassette multidrug transporter in Lactococcus lactis. To study the role of HorA in hop resistance, HorA was functionally expressed in L. lactis as a hexa-histidine-tagged protein using the nisin-controlled gene expression system. HorA expression increased the resistance of L. lactis to hop compounds and cytotoxic drugs. Drug transport studies with L. lactis cells and membrane vesicles and with proteoliposomes containing purified HorA protein identified HorA as a new member of the ABC family of multidrug transporters.


Nature Methods | 2009

Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions.

Nelson P. Barrera; Shoshanna C Isaacson; Min Zhou; Vassiliy N. Bavro; Alex Welch; Theresia A. Schaedler; Markus A. Seeger; Ricardo Núñez Miguel; Vladimir M. Korkhov; Hendrik W. van Veen; Henrietta Venter; Adrian R. Walmsley; Christopher G. Tate; Carol V. Robinson

We describe a general mass spectrometry approach to determine subunit stoichiometry and lipid binding in intact membrane protein complexes. By exploring conditions for preserving interactions during transmission into the gas phase and for optimally stripping away detergent, by subjecting the complex to multiple collisions, we released the intact complex largely devoid of detergent. This enabled us to characterize both subunit stoichiometry and lipid binding in 4 membrane protein complexes.


Biochimica et Biophysica Acta | 2009

Molecular basis of multidrug transport by ABC transporters

Markus A. Seeger; Hendrik W. van Veen

Multidrug ABC transporters such as the human multidrug resistance P-glycoprotein (ABCB1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. These transport systems contain two nucleotide-binding domains (NBDs) where ATP is bound and hydrolyzed and two membrane domains (MDs) which mediate vectorial transport of substrates across the cell membrane. Recent crystal structures of the bacterial ABCB1 homologues Sav1866 from Staphylococcus aureus and MsbA from Salmonella typhimurium and other organisms shed light on the possible conformational states adopted by multidrug ABC transporters during transport. These structures help to interpret cellular and biochemical data gathered on these transport proteins over the past three decades. However, there are contradictory views on how the catalytic cycle of ATP binding and hydrolysis by the NBDs is linked to the change in drug binding affinity at the MDs, which underlies the capture (high affinity) of the transported drug on one side of the membrane and its release (low affinity) on the other. This review provides an overview of the current evidence for the different transport models and establishes the most recent structure-function relationships in multidrug ABC transporters.


Trends in Biochemical Sciences | 2010

Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1

Daniel A.P. Gutmann; Andrew B. Ward; Ina L. Urbatsch; Geoffrey Chang; Hendrik W. van Veen

Multidrug ABC transporters can transport a wide range of drugs from the cell. Ongoing studies of the prototype mammalian multidrug resistance ATP-binding cassette transporter P-glycoprotein (ABCB1) have revealed many intriguing functional and biochemical features. However, a gap remains in our knowledge regarding the molecular basis of its broad specificity for structurally unrelated ligands. Recently, the first crystal structures of ligand-free and ligand-bound ABCB1 showed ligand binding in a cavity between its two membrane domains, and earlier observations on polyspecificity can now be interpreted in a structural context. Comparison of the new ABCB1 crystal structures with structures of bacterial homologs suggests a critical role for an axial rotation of transmembrane helices for high-affinity binding and low-affinity release of ligands during transmembrane transport.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state

Hassanul G. Choudhury; Zhen Tong; Indran Mathavan; Yanyan Li; So Iwata; Séverine Zirah; Sylvie Rebuffat; Hendrik W. van Veen; Konstantinos Beis

Significance ATP-binding cassette (ABC) exporters transport substrates by an alternating access mechanism that is driven by ATP binding and hydrolysis. The general mechanism is a motion from an inward to an outward state, with a different intertwining of the half-transporters in both states. In this study we determined the function and crystal structure of the ABC exporter McjD that exports the antibacterial peptide microcin J25. Our structure represents a novel nucleotide-bound, outward-occluded state. It does not possess subunit intertwining and shows a well-defined binding cavity that is closed to all sides, consistent with it being an intermediate between the inward- and outward-facing state. Our structure provides valuable insights in a transition state of an ABC exporter. Enterobacteriaceae produce antimicrobial peptides for survival under nutrient starvation. Microcin J25 (MccJ25) is an antimicrobial peptide with a unique lasso topology. It is secreted by the ATP-binding cassette (ABC) exporter McjD, which ensures self-immunity of the producing strain through efficient export of the toxic mature peptide from the cell. Here we have determined the crystal structure of McjD from Escherichia coli at 2.7-Å resolution, which is to the authors’ knowledge the first structure of an antibacterial peptide ABC transporter. Our functional and biochemical analyses demonstrate McjD-dependent immunity to MccJ25 through efflux of the peptide. McjD can directly bind MccJ25 and displays a basal ATPase activity that is stimulated by MccJ25 in both detergent solution and proteoliposomes. McjD adopts a new conformation, termed nucleotide-bound outward occluded. The new conformation defines a clear cavity; mutagenesis and ligand binding studies of the cavity have identified Phe86, Asn134, and Asn302 as important for recognition of MccJ25. Comparisons with the inward-open MsbA and outward-open Sav1866 structures show that McjD has structural similarities with both states without the intertwining of transmembrane (TM) helices. The occluded state is formed by rotation of TMs 1 and 2 toward the equivalent TMs of the opposite monomer, unlike Sav1866 where they intertwine with TMs 3–6 of the opposite monomer. Cysteine cross-linking studies on the McjD dimer in inside-out membrane vesicles of E. coli confirmed the presence of the occluded state. We therefore propose that the outward-occluded state represents a transition intermediate between the outward-open and inward-open conformation of ABC exporters.


Nature | 2003

An ABC transporter with a secondary-active multidrug translocator domain

Henrietta Venter; Richard A. Shilling; Saroj Velamakanni; Lekshmy Balakrishnan; Hendrik W. van Veen

Multidrug resistance, by which cells become resistant to multiple unrelated pharmaceuticals, is due to the extrusion of drugs from the cells interior by active transporters such as the human multidrug resistance P-glycoprotein. Two major classes of transporters mediate this extrusion. Primary-active transporters are dependent on ATP hydrolysis, whereas secondary-active transporters are driven by electrochemical ion gradients that exist across the plasma membrane. The ATP-binding cassette (ABC) transporter LmrA is a primary drug transporter in Lactococcus lactis that can functionally substitute for P-glycoprotein in lung fibroblast cells. Here we have engineered a truncated LmrA protein that lacks the ATP-binding domain. Surprisingly, this truncated protein mediates a proton–ethidium symport reaction without the requirement for ATP. In other words, it functions as a secondary-active multidrug uptake system. These findings suggest that the evolutionary precursor of LmrA was a secondary-active substrate translocator that acquired an ATP-binding domain to enable primary-active multidrug efflux in L. lactis.


Biochemical Journal | 2005

Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2)

Tavan Janvilisri; Sanjay Shahi; Henrietta Venter; Lekshmy Balakrishnan; Hendrik W. van Veen

The human BCRP (breast cancer resistance protein, also known as ABCG2) is an ABC (ATP-binding cassette) transporter that extrudes various anticancer drugs from cells, causing multidrug resistance. To study the molecular determinants of drug specificity of BCRP in more detail, we have expressed wild-type BCRP (BCRP-R) and the drug-selected cancer cell line-associated R482G (Arg482-->Gly) mutant BCRP (BCRP-G) in Lactococcus lactis. Drug resistance and the rate of drug efflux in BCRP-expressing cells were proportional to the expression level of the protein and affected by the R482G mutation, pointing to a direct role of BCRP in drug transport in L. lactis. In agreement with observations in mammalian cells, the BCRP-R-mediated transport of the cationic substrates rhodamine 123 and tetramethylrosamine was significantly decreased compared with the activity of BCRP-G. In addition, BCRP-R showed an enhanced interaction with the anionic anticancer drug methotrexate when compared with BCRP-G, suggesting that structure/substrate specificity relationships in BCRP, as observed in eukaryotic expression systems, are maintained in prokaryotic L. lactis. Interestingly, BCRP-R exhibited a previously unestablished ability to transport antibiotics, unconjugated sterols and primary bile acids in L. lactis, for which the R482G mutation was not critical. Since Arg482 is predicted to be present in the intracellular domain of BCRP, close to transmembrane segment 3, our results point to a role of this residue in electrostatic interactions with charged substrates including rhodamine 123 and methotrexate. Since unconjugated sterols are neutral molecules and bile acids and many antibiotics are engaged in protonation/deprotonation equilibria at physiological pH, our observations may point either to a lack of interaction between Arg482 and neutral or neutralized moieties in these substrates during transport or to the interaction of these substrates with regions in BCRP not including Arg482.


Journal of Bacteriology | 2005

Drug-Lipid A Interactions on the Escherichia coli ABC Transporter MsbA

Barbara Woebking; Galya Reuter; Richard A. Shilling; Saroj Velamakanni; Sanjay Shahi; Henrietta Venter; Lekshmy Balakrishnan; Hendrik W. van Veen

MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).

Collaboration


Dive into the Hendrik W. van Veen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrietta Venter

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Ben F. Luisi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay Shahi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Murakami

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge