Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hengli Tang is active.

Publication


Featured researches published by Hengli Tang.


Cell Stem Cell | 2016

Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth

Hengli Tang; Christy Hammack; Sarah C. Ogden; Zhexing Wen; Xuyu Qian; Yujing Li; Bing Yao; Jaehoon Shin; Feiran Zhang; Emily M. Lee; Kimberly M. Christian; Ruth Didier; Peng Jin; Hongjun Song; Guo Li Ming

The suspected link between infection by Zika virus (ZIKV), a re-emerging flavivirus, and microcephaly is an urgent global health concern. The direct target cells of ZIKV in the developing human fetus are not clear. Here we show that a strain of the ZIKV, MR766, serially passaged in monkey and mosquito cells efficiently infects human neural progenitor cells (hNPCs) derived from induced pluripotent stem cells. Infected hNPCs further release infectious ZIKV particles. Importantly, ZIKV infection increases cell death and dysregulates cell-cycle progression, resulting in attenuated hNPC growth. Global gene expression analysis of infected hNPCs reveals transcriptional dysregulation, notably of cell-cycle-related pathways. Our results identify hNPCs as a direct ZIKV target. In addition, we establish a tractable experimental model system to investigate the impact and mechanism of ZIKV on human brain development and provide a platform to screen therapeutic compounds.


Cell | 2016

Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure

Xuyu Qian; Ha Nam Nguyen; Mingxi M. Song; Christopher Hadiono; Sarah C. Ogden; Christy Hammack; Bing Yao; Gregory R. Hamersky; Fadi Jacob; Chun Zhong; Ki Jun Yoon; William Jeang; Li Lin; Yujing Li; Jai Thakor; Daniel A. Berg; Ce Zhang; Eunchai Kang; Michael Chickering; David Nauen; Cheng Ying Ho; Zhexing Wen; Kimberly M. Christian; Pei Yong Shi; Brady J. Maher; Hao Wu; Peng Jin; Hengli Tang; Hongjun Song; Guo Li Ming

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Journal of Virology | 2008

Cyclophilin A Is an Essential Cofactor for Hepatitis C Virus Infection and the Principal Mediator of Cyclosporine Resistance In Vitro

Feng Yang; Jason M. Robotham; Heather B. Nelson; Andre Irsigler; Rachael Kenworthy; Hengli Tang

ABSTRACT Cyclosporine (CsA) and its derivatives potently suppress hepatitis C virus (HCV) replication. Recently, CsA-resistant HCV replicons have been identified in vitro. We examined the dependence of the wild-type and CsA-resistant replicons on various cyclophilins for replication. A strong correlation between CsA resistance and reduced dependency on cyclophilin A (CyPA) for replication was identified. Silencing of CyPB or CyPC expression had no significant effect on replication, whereas various forms of small interfering RNA (siRNA) directed at CyPA inhibited HCV replication of wild-type but not CsA-resistant replicons. The efficiency of a particular siRNA in suppressing CyPA expression was correlated with its potency in inhibiting HCV replication, and expression of an siRNA-resistant CyPA cDNA rescued replication. In addition, an anti-CyPA antibody blocked replication of the wild-type but not the resistant replicon in an in vitro replication assay. Depletion of CyPA alone in the CsA-resistant replicon cells eliminated CsA resistance, indicating that CyPA is the chief mediator of the observed CsA resistance. The dependency on CyPA for replication was observed for both genotype (GT) 1a and 1b replicons as well as a GT 2a infectious virus. An interaction between CyPA and HCV RNA as well as the viral polymerase that is sensitive to CsA treatment in wild-type but not in resistant replicons was detected. These findings reveal the molecular mechanism of CsA resistance and identify CyPA as a critical cellular cofactor for HCV replication and infection.


Nature Medicine | 2016

Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen

Miao Xu; Emily M. Lee; Zhexing Wen; Yichen Cheng; Wei Kai Huang; Xuyu Qian; Julia Tcw; Jennifer Kouznetsova; Sarah C. Ogden; Christy Hammack; Fadi Jacob; Ha Nam Nguyen; Misha Itkin; Catherine Hanna; Paul Shinn; Chase Allen; Samuel G. Michael; Anton Simeonov; Wenwei Huang; Kimberly M. Christian; Alison Goate; Kristen J. Brennand; Ruili Huang; Menghang Xia; Guo Li Ming; Wei Zheng; Hongjun Song; Hengli Tang

In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.


Journal of Biological Chemistry | 2009

The isomerase active site of cyclophilin A is critical for hepatitis C virus replication.

Udayan Chatterji; Michael Bobardt; Suganya Selvarajah; Feng Yang; Hengli Tang; Noayo Sakamoto; Grégoire Vuagniaux; Tanya Parkinson; Philippe Gallay

Cyclosporine A and nonimmunosuppressive cyclophilin (Cyp) inhibitors such as Debio 025, NIM811, and SCY-635 block hepatitis C virus (HCV) replication in vitro. This effect was recently confirmed in HCV-infected patients where Debio 025 treatment dramatically decreased HCV viral load, suggesting that Cyps inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. Recent studies suggest that Cyps are important for HCV replication. However, a profound disagreement currently exists as to the respective roles of Cyp members in HCV replication. In this study, we analyzed the respective contribution of Cyp members to HCV replication by specifically knocking down their expression by both transient and stable small RNA interference. Only the CypA knockdown drastically decreased HCV replication. The re-expression of an exogenous CypA escape protein, which contains escape mutations at the small RNA interference recognition site, restored HCV replication, demonstrating the specificity for the CypA requirement. We then mutated residues that reside in the hydrophobic pocket of CypA where proline-containing peptide substrates and cyclosporine A bind and that are vital for the enzymatic or the hydrophobic pocket binding activity of CypA. Remarkably, these CypA mutants fail to restore HCV replication, suggesting for the first time that HCV exploits either the isomerase or the chaperone activity of CypA to replicate in hepatocytes and that CypA is the principal mediator of the Cyp inhibitor anti-HCV activity. Moreover, we demonstrated that the HCV NS5B polymerase associates with CypA via its enzymatic pocket. The study of the roles of Cyps in HCV replication should lead to the identification of new targets for the development of alternate anti-HCV therapies.


Nature Medicine | 1999

Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev

Thipparthi R. Reddy; Weidong Xu; Jonathan K. L. Mau; Christopher D. Goodwin; Modem Suhasini; Hengli Tang; Kenneth Frimpong; David W. Rose; Flossie Wong-Staal

The HIV-1 Rev protein facilitates the nuclear export of mRNA containing the Rev response element (RRE) through binding to the export receptor CRM-1. Here we show that a cellular nuclear protein, Sam68 (Src-associated protein in mitosis), specifically interacts with RRE and can partially substitute for as well as synergize with Rev in RRE-mediated gene expression and virus replication. Differential sensitivity to leptomycin B, an inhibitor of CRM-1, indicates that the export pathways mediated by Rev and Sam68 are distinct. C-terminally deleted mutants of Sam68 inhibited the transactivation of RRE-mediated expression by both wild-type Sam68 and Rev. They were retained in the cytoplasm and impeded the nuclear localization of Rev in co-expressed cells. These mutants also inhibited wild-type HIV-1 replication to the same extent as the RevM10 mutant, and may be useful as anti-viral agents in the treatment of AIDS.


Journal of Virology | 2009

Critical Role of Cyclophilin A and Its Prolyl-Peptidyl Isomerase Activity in the Structure and Function of the Hepatitis C Virus Replication Complex

Zhe Liu; Feng Yang; Jason M. Robotham; Hengli Tang

ABSTRACT Replication of hepatitis C virus (HCV) RNA occurs on intracellular membranes, and the replication complex (RC) contains viral RNA, nonstructural proteins, and cellular cofactors. We previously demonstrated that cyclophilin A (CyPA) is an essential cofactor for HCV infection and the intracellular target of cyclosporines anti-HCV effect. Here we investigate the mechanism by which CyPA facilitates HCV replication. Cyclosporine treatment specifically blocked the incorporation of NS5B into the RC without affecting either the total protein level or the membrane association of the protein. Other nonstructural proteins or viral RNAs in the RC were not affected. NS5B from the cyclosporine-resistant replicon was resistant to this disruption of RC incorporation. We also isolated membrane fractions from both naïve and HCV-positive cells and found that CyPA is recruited into membrane fractions in HCV-replicating cells via an interaction with RC-associated NS5B, which is sensitive to cyclosporine treatment. Finally, we introduced point mutations in the prolyl-peptidyl isomerase (PPIase) motif of CyPA and demonstrated a critical role of this motif in HCV replication in cDNA rescue experiments. We propose a model in which the incorporation of the HCV polymerase into the RC depends on its interaction with a cellular chaperone protein and in which cyclosporine inhibits HCV replication by blocking this critical interaction and the PPIase activity of CyPA. Our results provide a mechanism of action for the cyclosporine-mediated inhibition of HCV and identify a critical role of CyPAs PPIase activity in the proper assembly and function of the HCV RC.


PLOS Pathogens | 2012

Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation

Xianfang Wu; Jason M. Robotham; Emily M. Lee; Stephen Dalton; Norman M. Kneteman; David M. Gilbert; Hengli Tang

Primary human hepatocytes isolated from patient biopsies represent the most physiologically relevant cell culture model for hepatitis C virus (HCV) infection, but these primary cells are not readily accessible, display individual variability, and are largely refractory to genetic manipulation. Hepatocyte-like cells differentiated from pluripotent stem cells provide an attractive alternative as they not only overcome these shortcomings but can also provide an unlimited source of noncancer cells for both research and cell therapy. Despite its promise, the permissiveness to HCV infection of differentiated human hepatocyte-like cells (DHHs) has not been explored. Here we report a novel infection model based on DHHs derived from human embryonic (hESCs) and induced pluripotent stem cells (iPSCs). DHHs generated in chemically defined media under feeder-free conditions were subjected to infection by both HCV derived in cell culture (HCVcc) and patient-derived virus (HCVser). Pluripotent stem cells and definitive endoderm were not permissive for HCV infection whereas hepatic progenitor cells were persistently infected and secreted infectious particles into culture medium. Permissiveness to infection was correlated with induction of the liver-specific microRNA-122 and modulation of cellular factors that affect HCV replication. RNA interference directed toward essential cellular cofactors in stem cells resulted in HCV-resistant hepatocyte-like cells after differentiation. The ability to infect cultured cells directly with HCV patient serum, to study defined stages of viral permissiveness, and to produce genetically modified cells with desired phenotypes all have broad significance for host-pathogen interactions and cell therapy.


Journal of Virology | 2012

Hepatitis C Virus Attachment Mediated by Apolipoprotein E Binding to Cell Surface Heparan Sulfate

Jieyun Jiang; Wei Cun; Xianfang Wu; Qing Shi; Hengli Tang; Guangxiang Luo

ABSTRACT Viruses are known to use virally encoded envelope proteins for cell attachment, which is the very first step of virus infection. In the present study, we have obtained substantial evidence demonstrating that hepatitis C virus (HCV) uses the cellular protein apolipoprotein E (apoE) for its attachment to cells. An apoE-specific monoclonal antibody was able to efficiently block HCV attachment to the hepatoma cell line Huh-7.5 as well as primary human hepatocytes. After HCV bound to cells, however, anti-apoE antibody was unable to inhibit virus infection. Conversely, the HCV E2-specific monoclonal antibody CBH5 did not affect HCV attachment but potently inhibited HCV entry. Similarly, small interfering RNA-mediated knockdown of the key HCV receptor/coreceptor molecules CD81, claudin-1, low-density lipoprotein receptor (LDLr), occludin, and SR-BI did not affect HCV attachment but efficiently suppressed HCV infection, suggesting their important roles in HCV infection at postattachment steps. Strikingly, removal of heparan sulfate from the cell surface by treatment with heparinase blocked HCV attachment. Likewise, substitutions of the positively charged amino acids with neutral or negatively charged residues in the receptor-binding region of apoE resulted in a reduction of apoE-mediating HCV infection. More importantly, mutations of the arginine and lysine to alanine or glutamic acid in the receptor-binding region ablated the heparin-binding activity of apoE, as determined by an in vitro heparin pulldown assay. HCV attachment could also be inhibited by a synthetic peptide derived from the apoE receptor-binding region. Collectively, these findings demonstrate that apoE mediates HCV attachment through specific interactions with cell surface heparan sulfate.


Journal of Virology | 2007

Characterization of Hepatitis C Virus Subgenomic Replicon Resistance to Cyclosporine In Vitro

John M. Robida; Heather B. Nelson; Zhe Liu; Hengli Tang

ABSTRACT Treatment of hepatitis C virus (HCV) infection has been met with less than satisfactory results due primarily to its resistance to and significant side effects from alpha interferon (IFN-α). New classes of safe and broadly acting treatments are urgently needed. Cyclosporine (CsA), an immunosuppressive and anti-inflammatory drug for organ transplant patients, has recently been shown to be highly effective in suppressing HCV replication through a mechanism that is distinct from the IFN pathway. Here we report the selection and characterization of HCV replicon cells that are resistant to CsA treatment in vitro, taking advantage of our ability to sort live cells that are actively replicating HCV RNA in the presence of drug treatments. This resistance is specific to CsA as the replicon cells most resistant to CsA were still sensitive to IFN-α and a polymerase inhibitor. We demonstrate that the resistant phenotype is not a result of general enhanced replication and, furthermore, that mutations in the coding region of HCV NS5B contribute to the resistance. Interestingly, a point mutation (I432V) isolated from the most resistant replicon was able to rescue a lethal mutation (P540A) in NS5B that disrupts its interaction with its cofactor, cyclophilin B (CypB), even though the I432V mutation is located outside of the reported CypB binding site (amino acids 520 to 591). Our results demonstrate that CsA exerts selective pressure on the HCV genome, leading to the emergence of resistance-conferring mutations in the viral genome despite acting upon a cellular protein.

Collaboration


Dive into the Hengli Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily M. Lee

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guo Li Ming

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongjun Song

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Yang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Sarah C. Ogden

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Zhexing Wen

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge