Hengling Wei
Civil Aviation Authority of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hengling Wei.
BMC Plant Biology | 2013
Mingming Wei; Hengling Wei; Man Wu; Meizhen Song; Jinfa Zhang; Jiwen Yu; Shuli Fan; Shuxun Yu
BackgroundGenetic male sterility (GMS) in cotton (Gossypium hirsutum) plays an important role in the utilization of hybrid vigor. However, the molecular mechanism of the GMS is still unclear. While numerous studies have demonstrated that microRNAs (miRNA) regulate flower and anther development, whether different small RNA regulations exist in GMS and its wild type is unclear. A deep sequencing approach was used to investigate the global expression and complexity of small RNAs during cotton anther development in this study.ResultsThree small RNA libraries were constructed from the anthers of three development stages each from fertile wild type (WT) and its GMS mutant cotton, resulting in nearly 80 million sequence reads. The total number of miRNAs and short interfering RNAs in the three WT libraries was significantly greater than that in the corresponding three mutant libraries. Sixteen conserved miRNA families were identified, four of which comprised the vast majority of the expressed miRNAs during anther development. In addition, six conserved miRNA families were significantly differentially expressed during anther development between the GMS mutant and its WT.ConclusionsThe present study is the first to deep sequence the small RNA population in G. hirsutum GMS mutant and its WT anthers. Our results reveal that the small RNA regulations in cotton GMS mutant anther development are distinct from those of the WT. Further results indicated that the differently expressed miRNAs regulated transcripts that were distinctly involved in anther development. Identification of a different set of miRNAs between the cotton GMS mutant and its WT will facilitate our understanding of the molecular mechanisms for male sterility.
Molecular Genetics and Genomics | 2014
Lingling Dou; Xiaohong Zhang; Chaoyou Pang; Meizhen Song; Hengling Wei; Shuli Fan; Shuxun Yu
WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.
BMC Plant Biology | 2015
Min Lin; Chaoyou Pang; Shuli Fan; Meizhen Song; Hengling Wei; Shuxun Yu
BackgroundLeaf senescence is an important developmental programmed degeneration process that dramatically affects crop quality and yield. The regulation of senescence is highly complex. Although senescence regulatory genes have been well characterized in model species such as Arabidopsis and rice, there is little information on the control of this process in cotton. Here, the senescence process in cotton (Gossypium hirsutum L.) leaves was investigated over a time course including young leaf, mature leaf and leaf samples from different senescence stages using RNA-Seq.ResultsOf 24,846 genes detected by mapping the tags to Gossypium genomes, 3,624 genes were identified as differentially expressed during leaf senescence. There was some overlap between the genes identified here and senescence-associated genes previously identified in other species. Most of the genes related to photosynthesis, chlorophyll metabolism and carbon fixation were downregulated; whereas those for plant hormone signal transduction were upregulated. Quantitative real-time PCR was used to evaluate the results of RNA-Seq for gene expression profiles. Furthermore, 519 differentially expressed transcription factors were identified, notably WRKY, bHLH and C3H. In addition, 960 genes involved in the metabolism and regulation of eight hormones were identified, of which many genes involved in the abscisic acid, brassinosteroid, jasmonic acid, salicylic acid and ethylene pathways were upregulated, indicating that these hormone-related genes might play crucial roles in cotton leaf development and senescence. However, most auxin, cytokinin and gibberellin pathway-related genes were downregulated, suggesting that these three hormones may act as negative regulators of senescence.ConclusionsThis is the first high-resolution, multiple time-course, genome-wide comprehensive analysis of gene expression in cotton. These data are the most comprehensive dataset currently available for cotton leaf senescence, and will serve as a useful resource for unraveling the functions of many specific genes involved in cotton leaf development and senescence.
BMC Genomics | 2016
Junji Su; Chaoyou Pang; Hengling Wei; Libei Li; Bing Liang; Caixiang Wang; Meizhen Song; Hantao Wang; Shuqi Zhao; Xiaoyun Jia; Guangzhi Mao; Long Huang; Dandan Geng; Chengshe Wang; Shuli Fan; Shuxun Yu
BackgroundEarly maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. A genome-wide association study (GWAS) was conducted using the generalized linear model (GLM) and mixed linear model (MLM).ResultsA total of 81,675 SNPs in 355 upland cotton accessions were discovered using SLAF-seq and were subsequently used in GWAS. Thirteen significant associations between eight SNP loci and five early maturity traits were successfully identified using the GLM and MLM; two of the 13 associations were common between the models. By computing phenotypic effect values for the associations detected at each locus, 11 highly favorable SNP alleles were identified for five early maturity traits. Moreover, dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between the numbers of highly favorable alleles and the phenotypic values of the target traits were identified. Most importantly, a major locus (rs13562854) on chromosome Dt3 and a potential candidate gene (CotAD_01947) for early maturity were detected.ConclusionsThis study identified highly favorable SNP alleles and candidate genes associated with early maturity traits in upland cotton. The results demonstrate that GWAS is a powerful tool for dissecting complex traits and identifying candidate genes. The highly favorable SNP alleles and candidate genes for early maturity traits identified in this study should be show high potential for improvement of early maturity in future cotton breeding programs.
Molecular Genetics and Genomics | 2015
Xiaohong Zhang; Lingling Dou; Chaoyou Pang; Meizhen Song; Hengling Wei; Shuli Fan; Chengshe Wang; Shuxun Yu
SQUAMOSA promoter binding protein-like (SPL) genes encode plant-specific transcription factors that are involved in many fundamental developmental processes. Certain SPL genes contain sequences complementary to miR156, a microRNA (miRNA) that plays a role in modulating plant gene expression. In this study, 30 SPL genes were identified in the reference genome of Gossypium raimondii and 24 GhSPLs were cloned from Gossypium hirsutum. G. raimondii is regarded as the putative contributor of the D-subgenome of G. hirsutum. Comparative analysis demonstrated sequence conservation between GhSPLs and other plant species. GhSPL genes could be classified into seven subclades based on phylogenetic analysis, diverse intron–exon structure, and motif prediction. Within each subclade, genes shared a similar structure. Sequence and experimental analysis predicted that 18 GhSPL genes are putative targets of GhmiR156. Additionally, tissue-specific expression analysis of GhSPL genes showed that their spatiotemporal expression patterns during development progressed differently, with most genes having high transcript levels in leaves, stems, and flowers. Finally, overexpression of GhSPL3 and GhSPL18 in Arabidopsis plants demonstrated that these two genes are involved in the development of leaves and second shoots and play an integral role in promoting flowering. The flowering integrator GhSOC1 may bind to the promoter of GhSPL3 but not GhSPL18 to regulate flowering. In conclusion, our analysis of GhSPL genes will provide some gene resources and a further understanding of GhSPL3 and GhSPL18 function in flowering promotion. Furthermore, the comparative genomics and functional analysis deepened our understanding of GhSPL genes during upland cotton vegetative and reproductive growth.
Frontiers in Plant Science | 2016
Junji Su; Shuli Fan; Libei Li; Hengling Wei; Caixiang Wang; Hantao Wang; Meizhen Song; Chi Zhang; Lijiao Gu; Shuqi Zhao; Guangzhi Mao; Chengshe Wang; Chaoyou Pang; Shuxun Yu
Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs.
PLOS ONE | 2014
Xiaoyan Wang; Shuli Fan; Meizhen Song; Chaoyou Pang; Hengling Wei; Jiwen Yu; Qifeng Ma; Shuxun Yu
Extensive studies on floral transition in model species have revealed a network of regulatory interactions between proteins that transduce and integrate developmental and environmental signals to promote or inhibit the transition to flowering. Previous studies indicated FLOWERING PROMOTING FACTOR 1 (FPF1) gene was involved in the promotion of flowering, but the molecular mechanism was still unclear. Here, FPF1 homologous sequences were screened from diploid Gossypium raimondii L. (D-genome, n = 13) and Gossypium arboreum L. genome (A-genome, n = 13) databases. Orthologous genes from the two species were compared, suggesting that distinctions at nucleic acid and amino acid levels were not equivalent because of codon degeneracy. Six FPF1 homologous genes were identified from the cultivated allotetraploid Gossypium hirsutum L. (AD-genome, n = 26). Analysis of relative transcripts of the six genes in different tissues revealed that this gene family displayed strong tissue-specific expression. GhFPF1, encoding a 12.0-kDa protein (Accession No: KC832319) exerted more transcripts in floral apices of short-season cotton, hinting that it could be involved in floral regulation. Significantly activated APETALA 1 and suppressed FLOWERING LOCUS C expression were induced by over-expression of GhFPF1 in the Arabidopsis Columbia-0 ecotype. In addition, transgenic Arabidopsis displayed a constitutive shade-avoiding phenotype that is characterized by long hypocotyls and petioles, reduced chlorophyll content, and early flowering. We propose that GhFPF1 may be involved in flowering time control and shade-avoidance responses.
Gene | 2016
Fengli Zhao; Jianhui Ma; Libei Li; Shuli Fan; Yaning Guo; Meizhen Song; Hengling Wei; Chaoyou Pang; Shuxun Yu
NAC (NAM, ATAF, and CUC) is one of the largest transcription factor families in plants, and its members play various roles in plant growth, development, and the response to biotic and abiotic stresses. Currently, 77 NAC genes have been reported in cotton (Gossypium hirsutum L.). And GhNAC12 showed up-regulation during leaf senescence, but its role in this process is poorly understood. In the present study, a preliminary function analysis of GhNAC12 was performed during leaf senescence. qRT-PCR analysis indicated that GhNAC12 expression increased during the early-aging process and the aging of cotyledons. Additionally, we observed that overexpression of GhNAC12 in Arabidopsis led to early senescence (early aging). Our findings suggest that GhNAC12 is a candidate gene for early aging in upland cotton cultivars. Neutrality tests suggested that there was no selection pressure imposed on GhNAC12 during the domestication of upland cotton.
Journal of Integrative Plant Biology | 2013
Wenxiang Zhang; Shu-li Fan; Chaoyou Pang; Hengling Wei; Jianhui Ma; Mei-zhen Song; Shuxun Yu
The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16 h light/8 h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding.
Scientific Reports | 2016
Junji Su; Libei Li; Chaoyou Pang; Hengling Wei; Caixiang Wang; Meizhen Song; Hantao Wang; Shuqi Zhao; Chi Zhang; Guangzhi Mao; Long Huang; Chengshe Wang; Shuli Fan; Shuxun Yu
Fiber quality is one of the most important agronomic traits of cotton, and understanding the genetic basis of its target traits will accelerate improvements to cotton fiber quality. In this study, a panel comprising 355 upland cotton accessions was used to perform genome-wide association studies (GWASs) of five fiber quality traits in four environments. A total of 16, 10 and 7 SNPs were associated with fiber length (FL), fiber strength (FS) and fiber uniformity (FU), respectively, based on the mixed linear model (MLM). Most importantly, two major genomic regions (MGR1 and MGR2) on chromosome Dt7 and four potential candidate genes for FL were identified. Analyzing the geographical distribution of favorable haplotypes (FHs) among these lines revealed that two favorable haplotype frequencies (FHFs) were higher in accessions from low-latitude regions than in accessions from high-latitude regions. However, the genetic diversity of lines from the low-latitude regions was lower than the diversity of lines from the high-latitude regions in China. Furthermore, the FHFs differed among cultivars developed during different breeding periods. These results indicate that FHs have undergone artificial selection during upland cotton breeding in recent decades in China and provide a foundation for the further improvement of fiber quality traits.