Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hengpeng Li is active.

Publication


Featured researches published by Hengpeng Li.


Scientific Reports | 2015

How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?

Xuguang Tang; Hengpeng Li; Ankur R. Desai; Zoltán Nagy; Juhua Luo; Thomas E. Kolb; Albert Olioso; Xibao Xu; Li Yao; Werner L. Kutsch; Kim Pilegaard; Barbara Köstner; C. Ammann

A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earths major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.


Journal of Environmental Management | 2014

Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China.

Rongrong Wan; Shanshan Cai; Hengpeng Li; Guishan Yang; Zhaofu Li; Xiaofei Nie

Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies.


Science of The Total Environment | 2016

Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020

Xibao Xu; Guishan Yang; Yan Tan; Qianlai Zhuang; Hengpeng Li; Rongrong Wan; Weizhong Su; Jian Zhang

There are tremendous theoretical, methodological and policy challenges in evaluating the impact of land-use change on the degradation of ecosystem services (ES) at the regional scale. This study addresses these challenges by developing an interdisciplinary methodology based on the Procedure for Ecological Tiered Assessment of Risk (PETAR). This novel methodology integrates ecological models with a land-use change model. This study quantifies the multi-dimensional degradation risks of ES in the Taihu Lake Basin (TLB) of China from 1985 to 2020. Four key ES related to water purification, water quantity adjustment, carbon sequestration and grain production are selected. The study employs models of Denitrification-Decomposition (DNDC), Soil-Water-Atmosphere-Plant (SWAP), Biome-BGC and Agro-ecological Zoning (AEZ) for assimilations. Land-use changes by 2020 were projected using a geographically weighted multinomial logit-cellular automata (GWML-CA) model. The results show that rapid land-use change has posed a great degradation risk of ES in the region in 1985-2020. Slightly less than two-thirds of the basin experienced degradation of ES over the 1985-2010 period, and about 12% of the basin will continue to experience degradation until 2020. Hot spots with severe deterioration in 2010-2020 are projected to be centered around some small and less developed cities in the region. Regulating accelerated urban sprawl and population growth, reinforcing current environmental programs, and establishing monitoring systems for observing dynamics of regional ES are suggested as practical counter-measures.


Environmental Earth Sciences | 2015

A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database

Xuguang Tang; Hengpeng Li; Ni Huang; Xinyan Li; Xibao Xu; Zhi Ding; Jing Xie

Accurate and continuous monitoring of forest production is critical for quantifying the dynamics of regional-to-global carbon cycles. MOD17A2 provides high frequency observations of terrestrial gross primary productivity (GPP) and is widely used to evaluate the spatiotemporal variability and responses to changing climate. However, the effectiveness of the Moderate Resolution Imaging Spectroradiometer (MODIS) in measuring GPP is directly constrained by the large uncertainties in the modeling process, specifically for complicated and extensive forest ecosystems. Although there have been plenty of studies to verify the MODIS GPP product with ground-based measurements covering a range of biome types, few have comprehensively validated the performance of MODIS estimates (C5.5) for diverse forests. Thus, this study examined the degree of correspondence between the MODIS-derived GPP and the EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, encompassing evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF) relying on 16 flux towers with a total dataset of 68 site-years. Overall, the site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MODIS product works more significantly for DBF and MF, less for ENF, and least for EBF. Except for the tropical forest, MODIS estimates could capture the broad trends of GPP at an 8-day time scale for the other sites. At the seasonal time scale, the highest performance was observed in ENF, followed by MF and DBF, and the least performance was observed in EBF. Trend analyses also revealed the weak performance in EBF and DBF. This study suggested that current MODIS GPP estimates still need to improve the quality of different upstream inputs in addition to the algorithm for accurately quantifying forest production.


Science of The Total Environment | 2016

Changing land use and its impact on the habitat suitability for wintering Anseriformes in China's Poyang Lake region.

Xuguang Tang; Hengpeng Li; Xibao Xu; Guishan Yang; Guihua Liu; Xinyan Li; Dongqiang Chen

As an internationally important wetland for migratory waterbirds, Chinas Poyang Lake region has experienced substantial changes in land use during the past two decades owing to climate change and anthropogenic disturbances. Recent dam constructions on the Yangtze River and its tributaries for agriculture and hydroelectric power exert strong effects on the hydrological regimes of this lake. However, few studies have investigated how the land-use changes through time affect the habitat suitability for wintering Anseriformes-the largest community in this region. Thus, it is necessary to timely monitor changes in the habitat quality and understand the potential factors that alter it. In this study, three periods (1995, 2005 and 2014) of typical environmental indicators that have direct impacts on foraging and resting for the Anserformes, including proximity to water (density of lakes, rivers and ponds), human disturbances (density of residences and various road networks), preferred land cover types and food availability (NDVI), are integrated to develop a habitat suitability index model for habitat mapping. The results indicate that long-term lake shrinkage in low-water periods led to greatly expanded wetlands in these years, which provided more suitable habitat for migratory waterfowl. The amount of highly suitable habitat in 2014 was nearly twice as much as in 1995. Recent survey data from 1997 to 2013 also revealed an increase in the population size, and confirmed the improvement of habitat suitability in the Poyang Lake region. Spatial analysis revealed that land use changes contributed most to the improved habitat coverage between 1995 and 2014. However, the relative significances of these transformations for highly suitable and moderately suitable habitats are strikingly different. Increases in wetland and paddy field area are the main reasons for explaining these improvements, respectively. The framework model proposed in this study will help governments to evaluate habitat conservation and restoration for protecting waterbirds in a spatially explicit way.


Science of The Total Environment | 2017

How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?

Xuguang Tang; Hengpeng Li; Mingguo Ma; Li Yao; Matthias Peichl; Altaf Arain; Xibao Xu; Michael L. Goulden

Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in Re, but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change.


Journal of Geophysical Research | 2017

Impacts of Land-Use Changes on Net Ecosystem Production in the Taihu Lake Basin of China from 1985 to 2010

Xibao Xu; Guishan Yang; Yan Tan; Xuguang Tang; Hong Jiang; Xiaoxiang Sun; Qianlai Zhuang; Hengpeng Li

Land-use changes play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified BIOME-BGC model to examine the changes in the spatio-temporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of China during 1985-2010 and the extent to which land-use change impacted NEP. The model is calibrated with observed NEP at three flux sites for three dominant land-use types in the Basin including cropland, evergreen needleleaf forest, and mixed forest. Two simulations are conducted to distinguish the net effects of land-use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The study estimates that NEP in the Basin decreased by 9.8% (1.57 TgC) from 1985 to 2010, showing an overall downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land-use changes during 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.


Geoenvironmental Disasters | 2015

Impacts of human activities and climate change on the water environment of Lake Poyang Basin, China

Xinyan Li; Lu Zhang; Guishan Yang; Hengpeng Li; Bin He; Yuwei Chen; Xuguang Tang

BackgroundThe global mean temperature has risen by 0.85 °C from 1880 to 2012, and this increase may even accelerate in the future. The surface temperatures of large inland water bodies worldwide have been rapidly warming since 1985 with an average rate of 0.045 ± 0.011 °C yr−1 and rates as high as 0.10 ± 0.01 °C yr−1. The global climate change was responsible for an increased contribution of diffuse nutrient losses to the total nutrient loads in water bodies. More and more algae blooms were reported in inland water bodies. Lake Poyang, the largest freshwater lake in China, is experiencing a deterioration of water quality. Ganjiang River, as the longest river in the Lake Poyang catchment, plays an important role in linking between terrestrial and aquatic ecosystems. A large amount of N pollutants is transported through the Ganjiang River to Lake Poyang. It is important to study quantitatively human enhanced N (nitrogen) inputs and DIN (Dissolved Inorganic Nitrogen) exports through rivers in the background of global warming.ResultsIn this paper, we estimate the inputs of nitrogen (N) and exports of dissolved inorganic nitrogen (DIN) from the Ganjiang River to Lake Poyang for the period 1995-2010 by using the Global NEWS-DIN model. Modeled DIN yields range from 1038 kg N km−2 yr−1 in 1995 to 150 kg N km−2 yr−1 in 2010, showing a decreasing trend. The study demonstrates a varied contribution of different N inputs to river DIN yields during the period 1995-2010. Biological N fixation contributes about 73.3 % of DIN yields before 2005, but the contribution decreases substantially to 28.4 % in 2010. Chemical N fertilizer application and animal manure N inputs together contribute 12.6 % of the river DIN yields, while atmospheric N deposition contributes an average of 5.5 % of DIN yields in the period 1995-2010. Sewage N inputs contributes an average of 5.2 % of DIN yields over the period 1995-2005, while the contribution increases remarkably to 69.7 % in 2010. The trophic state index (TSI) of Lake Poyang agrees well with modeled DIN yields from the Ganjiang River over the whole study period.ConclusionsN inputs from nonpoint sources are approximately 10-54 times that from point sources. Almost all the diffuse DIN inputs were retained in the watershed before entering the lake Poyang. While about half of sewage N inputs were input to Lake Poyang as DIN from the Ganjiang River. Modeled DIN yield from Ganjiang River decreased after 2005 significantly, providing evidence for the recovering capacity of watersheds to retain DIN as inputs decrease as a direct result of human activities. The study also demonstrates a varied contribution of different N inputs to river DIN yields during the study period. The authors also point out that more attention should be kept on reducing sewage N discharge to Lake Poyang in the background of global warming.


Remote Sensing | 2015

Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data

Xuguang Tang; Hengpeng Li; Timothy J. Griffis; Xibao Xu; Zhi Ding; Guihua Liu

One of the most important linkages that couple terrestrial carbon and water cycles is ecosystem water use efficiency (WUE), which is relevant to the reasonable utilization of water resources and farming practices. Eddy covariance techniques provide an opportunity to monitor the variability in WUE and can be integrated with Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Scaling up in situ observations from flux tower sites to large areas remains challenging and few studies have been reported on direct estimation of WUE from remotely-sensed data. This study examined the main environmental factors driving the variability in WUE of corn/soybean croplands, and revealed the prominent role of solar radiation and temperature. Time-series of MODIS-derived enhanced vegetation indices (EVI), which are proxies for the plant responses to environmental controls, were also strongly correlated with ecosystem WUE, thereby implying great potential for remote quantification. Further, both performance of the indirect MODIS-derived WUE from gross primary productivity (GPP) and evapotranspiration (ET), and the direct estimates by exclusive use of MODIS EVI data were evaluated using tower-based measurements. The results showed that ecosystem WUE were overpredicted at the beginning and ending of crop-growth periods and severely underestimated during the peak periods by the indirect estimates from MODIS products, which was mainly attributed to the error source from MODIS GPP. However, a simple empirical model that is solely based on MODIS EVI data performed rather well to capture the seasonal variations in WUE, especially for the growing periods of croplands. Independent validation at different sites indicates the method has potential for broad application.


Environmental Science and Pollution Research | 2015

Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program–Fortran

Zhaofu Li; Hongyu Liu; Chuan Luo; Yan Li; Hengpeng Li; Jianjun Pan; Xiaosan Jiang; Quansuo Zhou; Zhengqin Xiong

The Hydrological Simulation Program-Fortran (HSPF), which is a hydrological and water-quality computer model that was developed by the United States Environmental Protection Agency, was employed to simulate runoff and nutrient export from a typical small watershed in a hilly eastern monsoon region of China. First, a parameter sensitivity analysis was performed to assess how changes in the model parameters affect runoff and nutrient export. Next, the model was calibrated and validated using measured runoff and nutrient concentration data. The Nash–Sutcliffe efficiency (ENS) values of the yearly runoff were 0.87 and 0.69 for the calibration and validation periods, respectively. For storms runoff events, the ENS values were 0.93 for the calibration period and 0.47 for the validation period. Antecedent precipitation and soil moisture conditions can affect the simulation accuracy of storm event flow. The ENS values for the total nitrogen (TN) export were 0.58 for the calibration period and 0.51 for the validation period. In addition, the correlation coefficients between the observed and simulated TN concentrations were 0.84 for the calibration period and 0.74 for the validation period. For phosphorus export, the ENS values were 0.89 for the calibration period and 0.88 for the validation period. In addition, the correlation coefficients between the observed and simulated orthophosphate concentrations were 0.96 and 0.94 for the calibration and validation periods, respectively. The nutrient simulation results are generally satisfactory even though the parameter-lumped HSPF model cannot represent the effects of the spatial pattern of land cover on nutrient export. The model parameters obtained in this study could serve as reference values for applying the model to similar regions. In addition, HSPF can properly describe the characteristics of water quantity and quality processes in this area. After adjustment, calibration, and validation of the parameters, the HSPF model is suitable for hydrological and water-quality simulations in watershed planning and management and for designing best management practices.

Collaboration


Dive into the Hengpeng Li's collaboration.

Top Co-Authors

Avatar

Xuguang Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xibao Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guishan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaofu Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinyan Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuan Luo

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Xie

University of Zurich

View shared research outputs
Top Co-Authors

Avatar

Rongrong Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhi Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guihua Liu

Jiangxi Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge