Hengxi Yang
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hengxi Yang.
ACS Nano | 2012
Ana Querejeta-Fernández; Juan C. Hernández-Garrido; Hengxi Yang; Yunlong Zhou; Aurea Varela; M. Parras; José Juan Calvino-Gámez; J.M. González-Calbet; Peter F. Green; Nicholas A. Kotov
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints, this field requires advancements in three principle directions: (a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and microlevels of organization; (b) understanding disassembly/deconstruction processes; and (c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: (1) nucleation of early PbS NPs with an average diameter of 31 nm; (2) assembly into 100-500 nm octahedral mesocrystals; (3) assembly into 1000-2500 nm hyperbranched stars; (4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; (5) deconstruction into rods and cuboctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern-determining forces that include van der Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy-harvesting devices which require organization of PbS components at multiple scales.
ACS Applied Materials & Interfaces | 2012
Bingyuan Huang; Emmanouil Glynos; Bradley Frieberg; Hengxi Yang; Peter F. Green
Regioregular poly(3-hexylthiophene) (RR-P3HT) is a widely used donor material for bulk heterojunction polymer solar cells. While much is known about the structure and properties of RR-P3HT films, important questions regarding hole mobilities in this material remain unresolved. Measurements of the out-of-plane hole mobilities, μ, of RR-P3HT films have been restricted to films in the thickness regime on the order of micrometers, beyond that generally used in solar cells, where the film thicknesses are typically 100 to 200 nm. Studies of in-plane carrier mobilities have been conducted in thinner films, in the thickness range 100-200 nm. However, the in-plane and out-of-plane hole mobilities in RR-P3HT can be significantly different. We show here that the out-of-plane hole mobilities in neat RR-P3HT films increase by an order of magnitude, from 10(-4) cm(2)/V·s, for a 80 nm thick film, to a value of 10(-3) cm(2)/V·s for films thicker than 700 nm. Through a combination of morphological characterization and simulations, we show that the thickness dependent mobilities are not only associated with the differences between the average morphologies of thick films and thin films, but specifically associated with changes in the local morphology of films as a function of distance from the interfaces.
Langmuir | 2012
Jenny Kim; Hengxi Yang; Peter F. Green
We demonstrate how to tailor the spatial distribution of gold nanoparticles (Au-NPs) of different sizes within polystyrene (PS) thin, supported, film hosts, thereby enabling the connection between the spatial distribution of Au-NPs within the polymer film and the optical properties to be determined. The real, n, and imaginary parts, k, of the complex refractive indices N = n(λ)+ik(λ) of the nanocomposite films were measured as a function of wavelength, λ, using multivariable angle spectroscopic ellipsometry. The surface plasmon response of films containing nearly homogeneous Au-NP distributions were well described by predictions based on classical Mie theory and the Drude model. The optical spectra of samples containing inhomogeneous nanoparticle distributions manifest features associated with differences in the size and interparticle spacings as well as the proximity and organization of nanoparticles at the substrate and free surface.
ACS Applied Materials & Interfaces | 2012
Ernest Carl McIntyre; Hengxi Yang; Peter F. Green
An important challenge in the field of electrorheology is identifying low-viscosity fluids that would exhibit significant changes in viscosity, or a yield stress, upon the application of an external electric field. Our recent research showed that optimal compositions of mixtures, 10 wt % sulfonated polyhedral oligomeric silsesquioxanes (s-POSS) mixed with polydimethyl siloxane (PDMS), exhibited significant electrorheological activity. Here we show that s-POSS/PDMS mixtures containing polystyrene (PS) fillers, of micrometer-sized dimensions, containing as little as ~1 wt % s-POSS, exhibited an increase in ER activity by an order of magnitude, beyond that of s-POSS/PDMS mixtures. The dynamic yield stress was found to scale with the particle diameter, a, as τ(y) is proportional to a(0.5) and with the electric field as τ(y) is proportional to E(1.5-2.5); this behavior is reasonably well understood within the context of dielectric electrorheological theory.
ACS Applied Materials & Interfaces | 2013
Carl McIntyre; Hengxi Yang; Peter F. Green
We recently showed that a suspension of micrometer-sized polystyrene (PS) particles in a PDMS liquid, mixed with small (1 wt %) amounts of a nanocage, sulfonated polyhedral oligomeric silsesquioxane (s-POSS), exhibited significant electrorheological (ER) behavior. This behavior was associated with the formation of a thin adsorbed layer of s-POSS onto the surfaces of PS and the subsequent formation of polarization-induced aggregates, or structures, responsible for the ER effect in an applied electric, E, field. Current theory suggests that the ER effect would largely be determined by the dielectric and conductive properties of the conductive layer of core/shell particles in ER suspensions. We show here that sulfonated-PS (s-PS)/PDMS suspensions exhibit further increases in the yield stress of over 200%, with the addition of s-POSS. The yield stress of this system, moreover, scales as τy [proportionality] E(2). The dielectric relaxation studies reveal the existence of a new relaxation peak in the s-POSS/s-PS/PDMS system that is absent in the s-POSS/PS/PDMS suspension. The relative sizes of these peaks are sensitive to the concentration of s-POSS and are associated with changes in the ER behavior. The properties of this class of ER fluids are not appropriately rationalized in terms of current theories.
Journal of Physical Chemistry C | 2013
Hengxi Yang; Emmanouil Glynos; Bingyuan Huang; Peter F. Green
Macromolecules | 2013
Hengxi Yang; Peter F. Green
Macromolecules | 2013
Hengxi Yang; X. Chelsea Chen; Ga Ram Jun; Peter F. Green
Macromolecules | 2012
X. Chelsea Chen; Hengxi Yang; Peter F. Green
Macromolecules | 2011
X. Chelsea Chen; Hengxi Yang; Peter F. Green