Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henk M.W. Verheul is active.

Publication


Featured researches published by Henk M.W. Verheul.


Nature Reviews Cancer | 2007

Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition

Henk M.W. Verheul

Contrary to initial expectations, angiogenesis inhibitors can cause toxicities in patients with cancer. The toxicity profiles of these inhibitors reflect the disturbance of growth factor signalling pathways that are important for maintaining homeostasis. Experiences with angiogenesis inhibitors in clinical trials indicate that short-term toxicities are mostly manageable. However, these agents will also be given in prolonged treatment strategies, so we need to anticipate possible long-term toxicities. In addition, understanding the molecular mechanisms involved in the toxicity of angiogenesis inhibition should allow more specific and more potent inhibitors to be developed.


The Lancet | 1998

Involvement of platelets in tumour angiogenesis

Henk M.W. Verheul; Robert J. D'Amato; Judah Folkman

Preclinical and clinical research show that tumour growth is dependent on angiogenesis. Activation of the coagulation cascade is commonly found in patients with cancer. We propose that platelets contribute to tumour-induced angiogenesis. The basis of our hypothesis is that platelets are a rich source of stimulators and inhibitors of angiogenesis and their interaction with the endothelium. Presumably, the antithrombotic state of normal endothelium is disturbed by endothelial stimuli derived from tumour cells. This hypothesis may explain the suggested clinical benefits of anticoagulants in cancer and implies that targeting of platelet interaction with tumour vasculature will inhibit angiogenesis.


Cancer Research | 2010

MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying Its Role in the Modulation of Gemcitabine Activity

Elisa Giovannetti; Niccola Funel; Godefridus J. Peters; Marco Del Chiaro; Leyla A. Erozenci; Enrico Vasile; Leticia G. Leon; Luca Pollina; Annemieke Groen; Alfredo Falcone; Romano Danesi; Daniela Campani; Henk M.W. Verheul; Ugo Boggi

MicroRNA-21 (miR-21) was reported to be overexpressed and contributes to invasion and gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to evaluate whether miR-21 expression was associated with the overall survival (OS) of PDAC patients treated with gemcitabine and to provide mechanistic insights for new therapeutic targets. miR-21 expression was evaluated in cells (including 7 PDAC cell lines, 7 primary cultures, fibroblasts, and a normal pancreatic ductal cell line) and tissues (neoplastic specimens from 81 PDAC patients and normal ductal samples) isolated by laser microdissection. The role of miR-21 on the pharmacologic effects of gemcitabine was studied with a specific miR-21 precursor (pre-miR-21). Patients with high miR-21 expression had a significantly shorter OS both in the metastatic and in the adjuvant setting. Multivariate analysis confirmed the prognostic significance of miR-21. miR-21 expression in primary cultures correlated with expression in their respective tissues and with gemcitabine resistance. Pre-miR-21 transfection significantly decreased antiproliferative effects and apoptosis induction by gemcitabine, whereas matrix metalloproteinase (MMP)-2/MMP-9 and vascular endothelial growth factor expression were upregulated. Addition of inhibitors of phosphoinositide 3-kinase and mammalian target of rapamycin resulted in decrease of phospho-Akt and prevented pre-miR-21-induced resistance to the proapoptotic effects of gemcitabine. miR-21 expression correlated with outcome in PDAC patients treated with gemcitabine. Modulation of apoptosis, Akt phosphorylation, and expression of genes involved in invasive behavior may contribute to the role of miR-21 in gemcitabine chemoresistance and to the rational development of new targeted combinations.


Angiogenesis | 2010

Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action?

Kristy J. Gotink; Henk M.W. Verheul

Tyrosine kinases are important cellular signaling proteins that have a variety of biological activities including cell proliferation and migration. Multiple kinases are involved in angiogenesis, including receptor tyrosine kinases such as the vascular endothelial growth factor receptor. Inhibition of angiogenic tyrosine kinases has been developed as a systemic treatment strategy for cancer. Three anti-angiogenic tyrosine kinase inhibitors (TKIs), sunitinib, sorafenib and pazopanib, with differential binding capacities to angiogenic kinases were recently approved for treatment of patients with advanced cancer (renal cell cancer, gastro-intestinal stromal tumors, and hepatocellular cancer). Many other anti-angiogenic TKIs are being studied in phase I-III clinical trials. In addition to their beneficial anti-tumor activity, clinical resistance and toxicities have also been observed with these agents. In this manuscript, we will give an overview of the design and development of anti-angiogenic TKIs. We describe their molecular structure and classification, their mechanism of action, and their inhibitory activity against specific kinase signaling pathways. In addition, we provide insight into what extent selective targeting of angiogenic kinases by TKIs may contribute to the clinically observed anti-tumor activity, resistance, and toxicity. We feel that it is of crucial importance to increase our understanding of the clinical mechanism of action of anti-angiogenic TKIs in order to further optimize their clinical efficacy.


Cancer Research | 2006

Class II Histone Deacetylases Are Associated with VHL-Independent Regulation of Hypoxia-Inducible Factor 1α

David Z. Qian; Sushant Kachhap; Spencer J. Collis; Henk M.W. Verheul; Michael A. Carducci; Peter Atadja; Roberto Pili

Hypoxia-inducible factor 1 alpha (HIF-1 alpha) plays a critical role in transcriptional gene activation involved in tumor angiogenesis. A novel class of agents, the histone deacetylase (HDAC) inhibitors, has been shown to inhibit tumor angiogenesis and HIF-1 alpha protein expression. However, the molecular mechanism responsible for this inhibition remains to be elucidated. In the current study, we investigated the molecular link between HIF-1 alpha inhibition and HDAC inhibition. Treatment of the VHL-deficient human renal cell carcinoma cell line UMRC2 with the hydroxamic HDAC inhibitor LAQ824 resulted in a dose-dependent inhibition of HIF-1 alpha protein via a VHL-independent mechanism and reduction of HIF-1 alpha transcriptional activity. HIF-1 alpha inhibition by LAQ824 was associated with HIF-1 alpha acetylation and polyubiquitination. HIF-1 alpha immunoprecipitates contained HDAC activity. Then, we tested different classes of HDAC inhibitors with diverse inhibitory activity of class I versus class II HDACs and assessed their capability of targeting HIF-1 alpha. Hydroxamic acid derivatives with known activity against both class I and class II HDACs were effective in inhibiting HIF-1 alpha at low nanomolar concentrations. In contrast, valproic acid and trapoxin were able to inhibit HIF-1 alpha only at concentrations that are effective against class II HDACs. Coimmunoprecipitation studies showed that class II HDAC4 and HDAC6 were associated with HIF-1 alpha protein. Inhibition by small interfering RNA of HDAC4 and HDAC6 reduced HIF-1 alpha protein expression and transcriptional activity. Taken together, these results suggest that class II HDACs are associated with HIF-1 alpha stability and provide a rationale for targeting HIF-1 alpha with HDAC inhibitors against class II isozymes.


Cancer Cell | 2012

Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy: Implications for Scheduling of Anti-Angiogenic Drugs

Astrid A.M. van der Veldt; Mark Lubberink; Idris Bahce; Maudy Walraven; Michiel P. de Boer; Henri Greuter; N. Harry Hendrikse; Jonas Eriksson; Albert D. Windhorst; Pieter E. Postmus; Henk M.W. Verheul; Erik H. Serné; Adriaan A. Lammertsma; Egbert F. Smit

Current strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cancer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetaxel ([(11)C]docetaxel). In NSCLC, bevacizumab reduced both perfusion and net influx rate of [(11)C]docetaxel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocate further studies to optimize scheduling of anti-angiogenic drugs.


Clinical Cancer Research | 2010

The First-in-Human Study of the Hydrogen Sulfate (Hyd-Sulfate) Capsule of the MEK1/2 Inhibitor AZD6244 (ARRY-142886): A Phase I Open-Label Multicenter Trial in Patients with Advanced Cancer

Udai Banerji; D. Ross Camidge; Henk M.W. Verheul; Roshan Agarwal; Debashis Sarker; Stan B. Kaye; I.M.E. Desar; Johanna N. H. Timmer-Bonte; S. Gail Eckhardt; Karl D. Lewis; Kathryn H. Brown; Mireille Cantarini; Clive Morris; Sarah M. A. George; Paul D. Smith; Carla M.L. van Herpen

Purpose: In part A, the aim was to define the maximum tolerated dose (MTD) of the hydrogen sulfate (Hyd-Sulfate) oral capsule formulation of the mitogen-activated protein kinase kinase inhibitor AZD6244 (ARRY-142886). In part B, the aim was to compare the pharmacokinetic profile of the new Hyd-Sulfate capsule with the initial AZD6244 free-base suspension and further characterize the pharmacodynamic profile and efficacy of the new formulation. Experimental Design: In part A, 30 patients received escalating doses of AZD6244 Hyd-Sulfate twice daily. In part B, 29 patients were randomized to a single dose of the Hyd-Sulfate capsule or free-base suspension, followed by a washout, then a single dose of the alternative formulation. Patients received the Hyd-Sulfate capsule twice daily at MTD of part A thereafter. Results: The MTD of the Hyd-Sulfate capsule was 75 mg twice daily. Dose limiting toxicities were Common Terminology Criteria for Adverse Events grade 3 acneiform rash and pleural effusion. Fatigue (65.7%) and acneiform dermatitis (60.0%) were the most frequent adverse events at the MTD. Based on area under curve0-24, exposure of the 75 mg Hyd-Sulfate capsule relative to the 100 mg free-base suspension was 197% (90% confidence interval, 161-242%). Pharmacodynamic analysis showed that inhibition of 12-O-tetradecanoylphorbol-13-acetate–induced extracellular signal-regulated kinase phosphorylation in peripheral blood lymphocytes was related to plasma concentrations of AZD6244, with an estimated IC50 of 352 ng/mL and maximum inhibition (Emax) of ∼91%, showing target inhibition. A patient with metastatic melanoma bearing a V600E BRAF mutation achieved a complete response persisting after 15 months of therapy. Conclusions: The AZD6244 Hyd-Sulfate capsule formulation has shown a favorable toxicity, pharmacokinetic, and pharmacodynamic profile, and is being taken forward in ongoing clinical trials. Clin Cancer Res; 16(5); 1613–23


Cancer Cell | 2015

RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics

Myron G. Best; Nik Sol; Irsan E. Kooi; Jihane Tannous; Bart A. Westerman; François Rustenburg; Pepijn Schellen; Heleen Verschueren; Edward Post; Jan Koster; Bauke Ylstra; Najim Ameziane; Josephine C. Dorsman; Egbert F. Smit; Henk M.W. Verheul; David P. Noske; Jaap C. Reijneveld; R. Jonas A. Nilsson; Bakhos A. Tannous; Pieter Wesseling; Thomas Wurdinger

Summary Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”.


Drug Resistance Updates | 2009

Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib

Henk J. Broxterman; Kristy J. Gotink; Henk M.W. Verheul

Multiple molecular, cellular, micro-environmental and systemic causes of anticancer drug resistance have been identified during the last 25 years. At the same time, genome-wide analysis of human tumor tissues has made it possible in principle to assess the expression of critical genes or mutations that determine the response of an individual patients tumor to drug treatment. Why then do we, with a few exceptions, such as mutation analysis of the EGFR to guide the use of EGFR inhibitors, have no predictive tests to assess a patients drug sensitivity profile. The problem urges the more with the expanding choice of drugs, which may be beneficial for a fraction of patients only. In this review we discuss recent studies and insights on mechanisms of anticancer drug resistance and try to answer the question: do we understand why a patient responds or fails to respond to therapy? We focus on doxorubicin as example of a classical cytotoxic, DNA damaging agent and on sunitinib, as example of the new generation of (receptor) tyrosine kinase-targeted agents. For both drugs, classical tumor cell autonomous resistance mechanisms, such as drug efflux transporters and mutations in the tumor cells survival signaling pathways, as well as micro-environment-related resistance mechanisms, such as changes in tumor stromal cell composition, matrix proteins, vascularity, oxygenation and energy metabolism may play a role. Novel agents that target specific mutations in the tumor cells damage repair (e.g. PARP inhibitors) or that target tumor survival pathways, such as Akt inhibitors, glycolysis inhibitors or mTOR inhibitors, are of high interest. In order to increase the therapeutic index of treatments, fine-tuned synergistic combinations of new and/or classical cytotoxic agents will be designed. More quantitative assessment of potential resistance mechanisms in real tumors and in real time, such as by kinase profiling methodology, will be developed to allow more precise prediction of the optimal drug combination to treat each patient.


Molecular Cancer Therapeutics | 2010

Reversible Epithelial to Mesenchymal Transition and Acquired Resistance to Sunitinib in Patients with Renal Cell Carcinoma: Evidence from a Xenograft Study

Hans J. Hammers; Henk M.W. Verheul; Brenda Salumbides; Rajni Sharma; Michelle A. Rudek; Janneke Jaspers; Preeti Shah; Leigh Ellis; Li Shen; Silvia Paesante; Karl Dykema; Kyle A. Furge; Bin Tean Teh; George J. Netto; Roberto Pili

Tyrosine kinase inhibitors (TKI) targeting angiogenesis via inhibition of the vascular endothelial growth factor pathway have changed the medical management of metastatic renal cell carcinoma. Although treatment with TKIs has shown clinical benefit, these drugs will eventually fail patients. The potential mechanisms of resistance to TKIs are poorly understood. To address this question, we obtained an excisional biopsy of a skin metastasis from a patient with clear cell renal carcinoma who initially had a response to sunitinib and eventually progressed with therapy. Tumor pieces were grafted s.c. in athymic nude mice. Established xenografts were treated with sunitinib. Tumor size, microvascular density, and pericyte coverage were determined. Plasma as well as tissue levels for sunitinib were assessed. A tumor-derived cell line was established and assessed in vitro for potential direct antitumor effects of sunitinib. To our surprise, xenografts from the patient who progressed on sunitinib regained sensitivity to the drug. At a dose of 40 mg/kg, sunitinib caused regression of the subcutaneous tumors. Histology showed a marked reduction in microvascular density and pericyte dysfunction. More interestingly, histologic examination of the original skin metastasis revealed evidence of epithelial to mesenchymal transition, whereas the xenografts showed reversion to the clear cell phenotype. In vitro studies showed no inhibitory effect on tumor cell growth at pharmacologically relevant concentrations. In conclusion, the histologic examination in this xenograft study suggests that reversible epithelial to mesenchymal transition may be associated with acquired tumor resistance to TKIs in patients with clear cell renal carcinoma. Mol Cancer Ther; 9(6); 1525–35. ©2010 AACR.

Collaboration


Dive into the Henk M.W. Verheul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connie R. Jimenez

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tanja D. de Gruijl

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henk J. Broxterman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mariette Labots

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerrit A. Meijer

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Arjan W. Griffioen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sander R. Piersma

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Godefridus J. Peters

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge