Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henk Noorman is active.

Publication


Featured researches published by Henk Noorman.


Biotechnology Journal | 2011

An industrial perspective on bioreactor scale‐down: What we can learn from combined large‐scale bioprocess and model fluid studies

Henk Noorman

For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated.


Engineering in Life Sciences | 2015

Integration of microbial kinetics and fluid dynamics toward model‐driven scale‐up of industrial bioprocesses

Guan Wang; Wenjun Tang; Jianye Xia; Ju Chu; Henk Noorman; Walter M. van Gulik

Scale‐up of bioprocesses is hampered by open questions, mostly related to poor mixing and mass transfer limitations. Concentration gradients of substrate, carbon dioxide, and oxygen in time and space, especially in large‐scale high‐cell density fed‐batch processes, are likely induced as the mixing time of the fermentor is usually longer than the relevant cellular reaction time. Cells in the fermentor are therefore repeatedly exposed to dynamic environments or perturbations. As a consequence, the heterogeneity in industrial practices often decreases either yield, titer, or productivity, or combinations thereof and increases by‐product formation as compared to well‐mixed small‐scale bioreactors, which is summarized as scale‐up effects. Identification of response mechanisms of the microorganism to various external perturbations is of great importance for pinpointing metabolic bottlenecks and targets for metabolic engineering. In this review, pulse response experimentation is proposed as an ideal way of obtaining kinetic information in combination with scale‐down approaches for in‐depth understanding of dynamic response mechanisms. As an emerging tool, computational fluid dynamics is able to draw a holistic picture of the fluid flow and concentration fields in the fermentor and finds its use in the optimization of fermentor design and process strategy. In the future, directed strain improvement and fermentor redesign are expected to largely depend on models, in which both microbial kinetics and fluid dynamics are thoroughly integrated.


ACS Synthetic Biology | 2016

Metabolic Engineering toward Sustainable Production of Nylon-6

Stefan Turk; Wigard P. Kloosterman; Dennis K. Ninaber; Karin P. A. M. Kolen; Julia Knutova; Erwin Suir; Martin Schürmann; Petronella Catharina Raemakers-Franken; Monika Müller; Stefaan de Wildeman; Leonie M. Raamsdonk; Ruud van der Pol; Liang Wu; Margarida Temudo; Rob van der Hoeven; Michiel Akeroyd; Roland van der Stoel; Henk Noorman; Roel A. L. Bovenberg; Axel C. Trefzer

Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.


Applied Microbiology and Biotechnology | 2001

Physiological characterisation of Penicillium chrysogenum strains expressing the expandase gene from Streptomyces clavuligerus during batch cultivations. Growth and adipoyl-7-aminodeacetoxycephalosporanic acid production.

Jarno Jacky Christian Robin; M. Jakobsen; Michael Beyer; Henk Noorman; Jens Nielsen

Abstract. The production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) was studied, using two recombinant strains of Penicillium chrysogenum carrying the expandase gene from Streptomyces clavuligerus. The adipoyl-side chain of this compound may easily be removed using an amidase; and this process therefore represents a new route for the production of 7-ADCA, which serves as a precursor for the production of many semi-synthetic cephalosporins. In this study, one low- and one high-yielding strains were characterised and the specific productivities of ad-7-ADCA and by-products of the biosynthetic pathway were compared. The fluxes through the biosynthetic pathway were quantified and it was found that there was a 30% higher flux through the expandase in the high-yielding strain. In both strains, there was a significant degradation of adipate. Furthermore, the initial adipate concentration in batch cultures was shown to have a positive effect on the formation of ad-7-ADCA.


Engineering in Life Sciences | 2016

Euler-Lagrange computational fluid dynamics for (bio)reactor scale down : An analysis of organism lifelines

Cees Haringa; Wenjun Tang; Amit T. Deshmukh; Jianye Xia; Matthias Reuss; Joseph J. Heijnen; Robert F. Mudde; Henk Noorman

The trajectories, referred to as lifelines, of individual microorganisms in an industrial scale fermentor under substrate limiting conditions were studied using an Euler‐Lagrange computational fluid dynamics approach. The metabolic response to substrate concentration variations along these lifelines provides deep insight in the dynamic environment inside a large‐scale fermentor, from the point of view of the microorganisms themselves. We present a novel methodology to evaluate this metabolic response, based on transitions between metabolic “regimes” that can provide a comprehensive statistical insight in the environmental fluctuations experienced by microorganisms inside an industrial bioreactor. These statistics provide the groundwork for the design of representative scale‐down simulators, mimicking substrate variations experimentally. To focus on the methodology we use an industrial fermentation of Penicillium chrysogenum in a simplified representation, dealing with only glucose gradients, single‐phase hydrodynamics, and assuming no limitation in oxygen supply, but reasonably capturing the relevant timescales. Nevertheless, the methodology provides useful insight in the relation between flow and component fluctuation timescales that are expected to hold in physically more thorough simulations. Microorganisms experience substrate fluctuations at timescales of seconds, in the order of magnitude of the global circulation time. Such rapid fluctuations should be replicated in truly industrially representative scale‐down simulators.


Applied Microbiology and Biotechnology | 2014

Prelude to rational scale-up of penicillin production: a scale-down study

Guan Wang; Ju Chu; Henk Noorman; Jianye Xia; Wenjun Tang; Yingping Zhuang; Siliang Zhang

Penicillin is one of the best known pharmaceuticals and is also an important member of the β-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the β-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and thereby for the optimization of penicillin production, and subsequently also benefiting other fermentation products.


Microbial Cell Factories | 2015

Integrated isotope-assisted metabolomics and 13 C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger

Hongzhong Lu; Xiaoyun Liu; Mingzhi Huang; Jianye Xia; Ju Chu; Yingping Zhuang; Siliang Zhang; Henk Noorman

BackgroundAspergillus niger is widely used for enzyme production and achievement of high enzyme production depends on the comprehensive understanding of cell’s metabolic regulation mechanisms.ResultsIn this paper, we investigate the metabolic differences and regulation mechanisms between a high glucoamylase-producing strain A. niger DS03043 and its wild-type parent strain A. niger CBS513.88 via an integrated isotope-assisted metabolomics and 13C metabolic flux analysis approach. We found that A. niger DS03043 had higher cell growth, glucose uptake, and glucoamylase production rates but lower oxalic acid and citric acid secretion rates. In response to above phenotype changes, A. niger DS03043 was characterized by an increased carbon flux directed to the oxidative pentose phosphate pathway in contrast to reduced flux through TCA cycle, which were confirmed by consistent changes in pool sizes of metabolites. A higher ratio of ATP over AMP in the high producing strain might contribute to the increase in the PP pathway flux as glucosephosphate isomerase was inhibited at higher ATP concentrations. A. niger CBS513.88, however, was in a higher redox state due to the imbalance of NADH regeneration and consumption, resulting in the secretion of oxalic acid and citric acid, as well as the accumulation of intracellular OAA and PEP, which may in turn result in the decrease in the glucose uptake rate.ConclusionsThe application of integrated metabolomics and 13C metabolic flux analysis highlights the regulation mechanisms of energy and redox metabolism on flux redistribution in A. niger. Graphical abstractAn integrated isotope-assisted metabolomics and 13C metabolic flux analysis was was firstly systematically performed in A. niger. In response to enzyme production, the metabolic flux in A. niger DS03043 (high-producing) was redistributed, characterized by an increased carbon flux directed to the oxidative pentose phosphate pathway as well as an increased pool size of pentose. The consistency in 13C metabolic flux analysis and metabolites quantification indicated that an imbalance of NADH formation and consumption led to the accumulation and secretion of organic acids in A. niger CBS513.88 (wild-type)


Microbiology | 2008

NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of β-lactam production

Jette Thykaer; Kanchana Rueksomtawin; Henk Noorman; Jens Nielsen

The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA- and a penicillin-producing strain. The gdhA gene disruption caused a decrease in maximum specific growth rate of 26 % and 35 % for the adipoyl-7-ADCA-producing strain and the penicillin-producing strain, respectively, compared to the corresponding reference strains. Interestingly, no beta-lactam production was detected in either of the DeltagdhA strains. Supplementation with glutamate restored growth but no beta-lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed continued beta-lactam production for the reference strains whereas the DeltagdhA strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no beta-lactam production was detected. The results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of beta-lactam production in industrial strains of P. chrysogenum.


Metabolic Engineering | 2003

Influence of the adipate and dissolved oxygen concentrations on the β-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

Jarno Jacky Christian Robin; S. Bonneau; Dick Schipper; Henk Noorman; Jens Nielsen

The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures. Operating conditions were maintained constant but the adipate and dissolved oxygen concentrations (DOC) were varied separately in a range from 1 to 37.5gl(-1) and from 2% to 125% air saturation (%AS), respectively. The total beta-lactams specific productivity, r(ptotal), was not significantly changed for adipate concentrations from 5 to 25gl(-1), but the flux towards an unknown by-product decreased as the adipate concentration increased. Investigations at different DOC showed that r(ptotal) was stable around 18 micro molgDW(-1)h(-1) for DOC being in the range from 15 to 125%AS. When DOC was decreased from 15 to 7%AS, r(ptotal) increased to 25 micro molgDW(-1)h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity.


Biotechnology and Bioengineering | 2017

Comprehensive reconstruction and in silico analysis of Aspergillus niger genome‐scale metabolic network model that accounts for 1210 ORFs

Hongzhong Lu; Weiqiang Cao; Li-Ming Ouyang; Jianye Xia; Mingzhi Huang; Ju Chu; Yingping Zhuang; Siliang Zhang; Henk Noorman

Aspergillus niger is one of the most important cell factories for industrial enzymes and organic acids production. A comprehensive genome‐scale metabolic network model (GSMM) with high quality is crucial for efficient strain improvement and process optimization. The lack of accurate reaction equations and gene‐protein‐reaction associations (GPRs) in the current best model of A. niger named GSMM iMA871, however, limits its application scope. To overcome these limitations, we updated the A. niger GSMM by combining the latest genome annotation and literature mining technology. Compared with iMA871, the number of reactions in iHL1210 was increased from 1,380 to 1,764, and the number of unique ORFs from 871 to 1,210. With the aid of our transcriptomics analysis, the existence of 63% ORFs and 68% reactions in iHL1210 can be verified when glucose was used as the only carbon source. Physiological data from chemostat cultivations, 13C‐labeled and molecular experiments from the published literature were further used to check the performance of iHL1210. The average correlation coefficients between the predicted fluxes and estimated fluxes from 13C‐labeling data were sufficiently high (above 0.89) and the prediction of cell growth on most of the reported carbon and nitrogen sources was consistent. Using the updated genome‐scale model, we evaluated gene essentiality on synthetic and yeast extract medium, as well as the effects of NADPH supply on glucoamylase production in A. niger. In summary, the new A. niger GSMM iHL1210 contains significant improvements with respect to the metabolic coverage and prediction performance, which paves the way for systematic metabolic engineering of A. niger. Biotechnol. Bioeng. 2017;114: 685–695.

Collaboration


Dive into the Henk Noorman's collaboration.

Top Co-Authors

Avatar

Jianye Xia

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ju Chu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Siliang Zhang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yingping Zhuang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wenjun Tang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cees Haringa

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Heijnen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Walter M. van Gulik

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Guan Wang

East China University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge