Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henk Stunnenberg is active.

Publication


Featured researches published by Henk Stunnenberg.


Cell | 1992

The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway

Cecilia Bucci; Robert G. Parton; Ian H. Mather; Henk Stunnenberg; Kai Simons; Bernard Hoflack; Marino Zerial

We have investigated the in vivo functional role of rab5, a small GTPase associated with the plasma membrane and early endosomes. Wild-type rab5 or rab5-ile133, a mutant protein defective in GTP binding, was overexpressed in baby hamster kidney cells. In cells expressing the rab5ile 133 protein, the rate of endocytosis was decreased by 50% compared with normal, while the rate of recycling was not significantly affected. The morphology of early endosomes was also drastically changed by the mutant protein, which induced accumulation of small tubules and vesicles at the periphery of the cell. Surprisingly, overexpression of wild-type rab5 accelerated the uptake of endocytic markers and led to the appearance of atypically large early endosomes. We conclude that rab5 is a rate-limiting component of the machinery regulating the kinetics of membrane traffic in the early endocytic pathway.


Nature | 2009

An oestrogen-receptor-α-bound human chromatin interactome

Melissa J. Fullwood; Liu Mh; Pan Yf; Jianjun Liu; Xu H; Mohamed Yb; Yuriy L. Orlov; Velkov S; Ho A; Mei Ph; Chew Eg; Huang Py; Welboren Wj; Yuyuan Han; Hong Sain Ooi; Pramila Ariyaratne; Vinsensius B. Vega; Luo Y; Peck Yean Tan; Choy Py; Wansa Kd; Zhao B; Kar Sian Lim; Leow Sc; Yow Js; Joseph R; Li H; Desai Kv; Thomsen Js; Lee Yk

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor α (ER-α) in the human genome. We found that most high-confidence remote ER-α-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-α functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.


Nature | 2010

Nitrite-driven anaerobic methane oxidation by oxygenic bacteria

Katharina F. Ettwig; Margaret K. Butler; Denis Le Paslier; Eric Pelletier; Sophie Mangenot; Marcel M. M. Kuypers; Frank Schreiber; Bas E. Dutilh; Johannes Zedelius; Dirk de Beer; Jolein Gloerich; Hans Wessels; Theo van Alen; Francisca A. Luesken; Ming L. Wu; Katinka van de Pas-Schoonen; Huub J. M. Op den Camp; Eva M. Janssen-Megens; Kees-Jan Francoijs; Henk Stunnenberg; Jean Weissenbach; Mike S. M. Jetten; Marc Strous

Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named ‘Candidatus Methylomirabilis oxyfera’, was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that ‘M. oxyfera’ bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.


Cell | 2007

Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4.

Michiel Vermeulen; Klaas W. Mulder; Sergei Denissov; W.W.M. Pim Pijnappel; Frederik M. A. van Schaik; Radhika A. Varier; Marijke P.A. Baltissen; Henk Stunnenberg; Matthias Mann; H. Th. Marc Timmers

Trimethylation of histone H3 at lysine 4 (H3K4me3) is regarded as a hallmark of active human promoters, but it remains unclear how this posttranslational modification links to transcriptional activation. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic screening we show that the basal transcription factor TFIID directly binds to the H3K4me3 mark via the plant homeodomain (PHD) finger of TAF3. Selective loss of H3K4me3 reduces transcription from and TFIID binding to a subset of promoters in vivo. Equilibrium binding assays and competition experiments show that the TAF3 PHD finger is highly selective for H3K4me3. In transient assays, TAF3 can act as a transcriptional coactivator in a PHD finger-dependent manner. Interestingly, asymmetric dimethylation of H3R2 selectively inhibits TFIID binding to H3K4me3, whereas acetylation of H3K9 and H3K14 potentiates TFIID interaction. Our experiments reveal crosstalk between histone modifications and the transcription factor TFIID. This has important implications for regulation of RNA polymerase II-mediated transcription in higher eukaryotes.


Nature | 2011

Molecular mechanism of anaerobic ammonium oxidation.

Boran Kartal; Wouter J. Maalcke; N.M. de Almeida; I.E.Y. Cirpus; Jolein Gloerich; Wim J. Geerts; H.J.M. op den Camp; Harry R. Harhangi; Eva M. Janssen-Megens; Kees-Jan Francoijs; Henk Stunnenberg; Jan T. Keltjens; Jetten; Marc Strous

Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N2) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N2H4). Here we show that N2H4 is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N2H4. We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N2H4 synthesis and its oxidation to N2. These results present a new biochemical reaction forging an N–N bond and fill a lacuna in our understanding of the biochemical synthesis of the N2 in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.


Cell | 2001

A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility

Melissa R. van Dijk; Chris J. Janse; Joanne Thompson; Andrew P. Waters; Joanna A. M. Braks; Huub J. Dodemont; Henk Stunnenberg; Geert-Jan van Gemert; Robert W. Sauerwein; Wijnand Eling

Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.


Developmental Neuroscience | 2003

Beyond laminar fate: Toward a molecular classification of cortical projection/pyramidal neurons

Robert F. Hevner; Ray A. M. Daza; John L.R. Rubenstein; Henk Stunnenberg; Jaime F. Olavarria; Chris Englund

Cortical projection neurons exhibit diverse morphological, physiological, and molecular phenotypes, but it is unknown how many distinct types exist. Many projection cell phenotypes are associated with laminar fate (radial position), but each layer may also contain multiple types of projection cells. We have investigated two hypotheses: (1) that different projection cell types exhibit characteristic molecular expression profiles and (2) that laminar fates are determined primarily by molecular phenotype. We found that several transcription factors were differentially expressed by projection neurons, even within the same layer: Otx1 and Er81, for example, were expressed by different neurons in layer 5. Retrograde tracing showed that Er81 was expressed in corticospinal and corticocortical neurons. In contrast, Otx1 has been detected only in corticobulbar neurons [Weimann et al., Neuron 1999;24:819–831]. Birthdating demonstrated that different molecularly defined types were produced sequentially, in overlapping waves. Cells adopted laminar fates characteristic of their molecular phenotypes, regardless of cell birthday. Molecular markers also revealed the locations of different projection cell types in the malformed cortex of reeler mice. These studies suggest that molecular profiles can be used advantageously for classifying cortical projection cells, for analyzing their neurogenesis and fate specification, and for evaluating cortical malformations.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum

Adriana M. Salcedo-Amaya; M.A. van Driel; B.T. Alako; Morten Beck Trelle; A.M.G. van den Elzen; Adrian Cohen; Eva M. Janssen-Megens; M.G. van de Vegte-Bolmer; R.R. Selzer; A.L. Iniguez; R.D. Green; Robert W. Sauerwein; Ole Nørregaard Jensen; Henk Stunnenberg

Epigenome profiling has led to the paradigm that promoters of active genes are decorated with H3K4me3 and H3K9ac marks. To explore the epigenome of Plasmodium falciparum asexual stages, we performed MS analysis of histone modifications and found a general preponderance of H3/H4 acetylation and H3K4me3. ChIP-on-chip profiling of H3, H3K4me3, H3K9me3, and H3K9ac from asynchronous parasites revealed an extensively euchromatic epigenome with heterochromatin restricted to variant surface antigen gene families (VSA) and a number of genes hitherto unlinked to VSA. Remarkably, the vast majority of the genome shows an unexpected pattern of enrichment of H3K4me3 and H3K9ac. Analysis of synchronized parasites revealed significant developmental stage specificity of the epigenome. In rings, H3K4me3 and H3K9ac are homogenous across the genes marking active and inactive genes equally, whereas in schizonts, they are enriched at the 5′ end of active genes. This study reveals an unforeseen and unique plasticity in the use of the epigenetic marks and implies the presence of distinct epigenetic pathways in gene silencing/activation throughout the erythrocytic cycle.


Development | 2014

Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant

Sergey Denissov; Helmut Hofemeister; Hendrik Marks; Andrea Kranz; Giovanni Ciotta; Sumeet Pal Singh; Konstantinos Anastassiadis; Henk Stunnenberg; Adrian Francis Stewart

Trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of actively transcribed genes is a universal epigenetic mark and a key product of Trithorax group action. Here, we show that Mll2, one of the six Set1/Trithorax-type H3K4 methyltransferases in mammals, is required for trimethylation of bivalent promoters in mouse embryonic stem cells. Mll2 is bound to bivalent promoters but also to most active promoters, which do not require Mll2 for H3K4me3 or mRNA expression. By contrast, the Set1 complex (Set1C) subunit Cxxc1 is primarily bound to active but not bivalent promoters. This indicates that bivalent promoters rely on Mll2 for H3K4me3 whereas active promoters have more than one bound H3K4 methyltransferase, including Set1C. Removal of Mll1, sister to Mll2, had almost no effect on any promoter unless Mll2 was also removed, indicating functional backup between these enzymes. Except for a subset, loss of H3K4me3 on bivalent promoters did not prevent responsiveness to retinoic acid, thereby arguing against a priming model for bivalency. In contrast, we propose that Mll2 is the pioneer trimethyltransferase for promoter definition in the naïve epigenome and that Polycomb group action on bivalent promoters blocks the premature establishment of active, Set1C-bound, promoters.


Journal of Bacteriology | 2011

Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin Benson Bassham cycle for carbon dioxide fixation

Ahmad F. Khadem; Arjan Pol; Adam S. Wieczorek; Sepehr S. Mohammadi; Kees-Jan Francoijs; Henk Stunnenberg; Mike S. M. Jetten; H.J.M. op den Camp

Genome data of the extreme acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicumstrain SolV indicated the ability of autotrophic growth. This was further validated by transcriptome analysis, which showed that all genes required for a functional Calvin-Benson-Bassham (CBB) cycle were transcribed. Experiments with (13)CH(4) or (13)CO(2) in batch and chemostat cultures demonstrated that CO(2) is the sole carbon source for growth of strain SolV. In the presence of CH(4), CO(2) concentrations in the headspace below 1% (vol/vol) were growth limiting, and no growth was observed when CO(2)concentrations were below 0.3% (vol/vol). The activity of the key enzyme of the CBB cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), measured with a (13)C stable-isotope method was about 70 nmol CO(2) fixed · min(-1)· mg of protein(-1). An immune reaction with antibody against the large subunit of RuBisCO on Western blots was found only in the supernatant fractions of cell extracts. The apparent native mass of the RuBisCO complex in strain SolV was about 482 kDa, probably consisting of 8 large (53-kDa) and 8 small (16-kDa) subunits. Based on phylogenetic analysis of the corresponding RuBisCO gene, we postulate that RuBisCO of the verrucomicrobial methanotrophs represents a new type of form I RuBisCO.

Collaboration


Dive into the Henk Stunnenberg's collaboration.

Top Co-Authors

Avatar

Joost H.A. Martens

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Hendrik Marks

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kees-Jan Francoijs

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Paul Flicek

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michiel Vermeulen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Giovanni Iacono

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge