Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henning Kage is active.

Publication


Featured researches published by Henning Kage.


European Journal of Agronomy | 2004

Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation

Henning Kage; M. Kochler; Hartmut Stützel

Field and container experiments were carried out in order to quantify root growth and dry matter partitioning of cauliflower under drought stress conditions. Drought stress did not influence allometric relationships between leaf and stem dry matter and shoot and tap root dry matter. Drought stress, however, had an impact on the sink strength of the curd, thereby curd growth was delayed and curd dry matter production was more seriously depressed by a limited water supply than total dry matter. Drought stress did not modify a linear relationship between shoot dry matter and total root length, however, the specific root length of cauliflower was lower under drought stress conditions leading to a higher dry matter deposition in the fine root fraction. Also the vertical increment of rooting depth per degree day almost doubled under drought stress conditions. An existing model for dry matter partitioning in cauliflower was adopted to include the effects of drought stress on dry matter partitioning to the curd. Therefore, the initial increase of the curds sink strength was made dependent on the plants relative growth rate during the vernalisation period. Furthermore, a simple descriptive root growth model was adopted to include drought stress impact on root growth. For this purpose the increase of rooting depth per degree day and the specific root length were made dependent on the average soil water potential in the rooted soil profile. The modified model modules predicted dry matter partitioning and described the root length distribution of cauliflower sufficiently well using total dry matter production rate as input values.


Environmental Research Letters | 2014

Impact of heat stress on crop yield—on the importance of considering canopy temperature

Stefan Siebert; Frank Ewert; Ehsan Eyshi Rezaei; Henning Kage; Rikard Graß

Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 °C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994–2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.


Agronomy for Sustainable Development | 2010

Efficient N management using winter oilseed rape. A review.

K. Sieling; Henning Kage

During the last decades the acreage of winter oilseed rape has been increased considerably in Europe. Rapeseed can take up a large amount of nitrogen before winter (>100 kg N/ha) and thus prevent nitrate leaching and pollution. Winter wheat is often grown subsequently, using oilseed rape as a favorable preceding crop. However, under wheat large nitrogen losses via leaching are frequently observed in humid climates during winter, mainly due to high amounts of soil mineral N available in fall and the small N uptake in fall of wheat as a subsequent crop. The low N offtake by the seeds results in a lower N-use efficiency and increases the N surpluses (>90 kg N/ha) compared with winter wheat (c. 40 kg N/ha). In addition, a large soil N pool increases the risk of N2O emission, with its impact on climate change. In our review we discuss several options to increase nitrogen-use efficiency in oilseed rape-based cropping systems ranging from optimizing N fertilization practices to options arising from adopted tillage practices and crop rotation. N application in fall normally increases dry matter accumulation and N uptake before winter. However, because of its limited yield effects in most situations, fall N supply also boosts N surpluses. N fertilization in spring exceeding the need of the crop for optimal seed yield increases the risk of N leaching and decreases the farmer’s net revenue. Considering the amount of N taken up by the canopy before the first spring application improves the determination of the optimal spring N supply. Measuring canopy N in fall gave the best results. At the cropping system level, time and intensity of soil tillage after the harvest of oilseed rape has concurrent goals of controlling volunteer rape, and achieving a successful establishment of the following crop, but avoiding an increased N mineralization. Changing the crop rotation by growing catch crops which prevent N from leaching is very effective in reducing N losses from the system by >40%. However, the economic losses from growing a usually less profitable spring crop probably limit the acceptance by farmers. Despite the problems addressed above, looking at the whole cropping system, oilseed rape is indispensable because of its beneficial effects on yield levels and nitrogen-use efficiency of following cereals, especially wheat, because alternative crops are often not realistic alternatives.


Plant and Soil | 2000

Root growth of cauliflower ( Brassica oleracea L. botrytis) under unstressed conditions: Measurement and modelling

Henning Kage; M. Kochler; Hartmut Stützel

Root observations were carried out on cauliflower using the minirhizotron and the soil core method in two years on two locations with different soil types, a loess loam and a humic loamy sand. Total root length (RL) (cm cm-2) of cauliflower was correlated to total shoot dry weight (Wsh) (g m-2) RL=0.0124(±0.005)s*Wsh, r2=0.76. There was an acceptable correlation (r2=0.88) between the minirhizotron and the soil core methods for the sub-soil data, whereas the minirhizotron method underestimated rooting intensity for the top soil. Changes in rooting depth over time could be described for both soil types using a segmented function of temperature sum, consisting of an early exponential and a later linear phase. The increase of rooting depth during the linear phase was 0.107(±0.01) cm °C-1 d-1. A simple descriptive root growth model based on the assumptions of a negative exponential decline of root length density (RLD) with soil depth, of a fixed ratio of RLD at the top of the soil profile and at rooting depth (rRLD) and of a fixed fraction of dry matter increase allocated to fine-roots (ffR) was formulated and used to describe the temporal and spatial variation of RLD found in the field. Slightly different estimates of ffR and of rRLD could be found for the different soil types, indicating a higher fraction of fine-root dry matter for the loess loam soil and a somewhat deeper root system for the humic loamy sand soil. A cross validation using the parameter values obtained from adjusting to the rooting data of one soil type for predicting RLD values of the other soil type, however, indicated that still quite satisfactory estimates (r2=0.91 and 0.95) of RLD could be obtained.


Physiologia Plantarum | 2012

An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley

Karin Krupinska; Maria Mulisch; Julien Hollmann; Krzysztof Tokarz; Wiebke Zschiesche; Henning Kage; Klaus Humbeck; Wolfgang Bilger

Changes in function and composition of the photosynthetic apparatus as well as the ultrastructure of chloroplasts in mesophyll cells were analyzed in flag leaves of the high-yield barley (Hordeum vulgare) variety cv. Lomerit during senescence under field conditions in two successive years. In contrast to previous results obtained with the elder variety cv. Carina photosystem II efficiency measured by F(v)/F(m) was found to be rather stable until a very late stage of senescence. Chlorophyll a fluorescence and P700 absorbance measurements revealed that the activities of the two photosystems declined in parallel. An increase in the chlorophyll a/b ratio at a late stage of senescence was observed to coincide with a decline in the level of the Lhcb1 apoprotein of the light harvesting complex (LHC) and the level of the corresponding transcript. Ultrastructural investigations revealed the presence of gerontoplasts that have long, single or pairwise thylakoids and lack large grana stacks. It is hypothesized that the early degradation of grana thylakoids harboring the major LHC reduced the risk of photoinhibition and might be causally related to the high yield of the barley variety cv. Lomerit.


The Journal of Agricultural Science | 2007

Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation

J. Henke; G. Breustedt; K. Sieling; Henning Kage

Crop yield and optimum nitrogen fertilization rates (Nopt) are often calculated ex post by specific functions of the nitrogen fertilization rate, but in doing this, uncertainties in terms of model choice, annual nitrogen response variations and parameter estimation are neglected. In the present study, Nopt, grain yields, net revenues and N balances were estimated for the three crops of an oilseed rape (OSR)–winter wheat–winter barley rotation. The effects of uncertainties were considered using three different statistical models, estimating an identical Nopt over the years and carrying out Monte-Carlo simulations where model parameters were varied according to their estimated standard errors. The statistical models used were the quadratic (Q) polynomial function, the linear response and plateau (LRP) function and the quadratic response and plateau (QRP) function. The Q model tended to estimate the highest Nopt values for the three crops, followed by the QRP and the LRP model in an initial ex post analysis. The highest corresponding mean net revenues in the rotation were estimated by the LRP model, followed by the Q and QRP model; mean N balances increased in the order LRP, QRP and Q. In the comparison of the crops, OSR showed the highest N balances followed by wheat and barley. Considering the protein concentration in wheat, Nopt values estimated by the Q model were considerably higher than without the economic effects of grain quality. In order to consider uncertainties in annual nitrogen response, an ex ante Nopt over the years was determined by maximizing the cumulated net revenues over all years in the rotation. Ex ante Nopt was higher as the mean of the ex post Nopt values for the QRP and LRP model. Average grain yields and net revenues were lower, N balances were higher. Running the Monte-Carlo simulations, ex post Nopt was obtained by 10 000 generated functions in each year and ex ante Nopt by 50 000 generated functions of years 1996, 1997, 1998, 1999 and 2002. This led to an increase in Nopt especially for the LRP model, while effects on the estimation of Nopt by the Q model were rather small. For the LRP model, corresponding mean net revenue decreased and mean N balance rose. In contrast, due to marginal changes in Nopt, the consideration of uncertainties in the estimations had only a small effect on net revenue and N balance in the Q model. In general, all kinds of uncertainty tended to increase Nopt but this effect was much higher for the LRP model as compared to the Q model. This increase in Nopt was associated with decreasing net revenues and increasing N balances. Exceptionally in OSR using the Q model, however, the ex ante approaches considering uncertainty led to slightly lower Nopt values compared to the ex post value.


The Journal of Agricultural Science | 2009

Analysing soil and canopy factors affecting optimum nitrogen fertilization rates of oilseed rape ( Brassica napus )

J. Henke; K. Sieling; W. Sauermann; Henning Kage

Implementation of the EU Nitrate Directive in Germany will result in nitrogen (N) balance surpluses being restricted to 60 kg N/ha averaged over 3 years, starting in 2009. With N surpluses of more than 100 kg N/ha, winter oilseed rape (OSR) is a main contributor to N balance surpluses in OSR-based crop rotations in northern Germany. The exact calculation of N fertilization rates therefore becomes increasingly important in order to meet the target of less than 60 kg N/ha N balance average surplus over 3 years at a farm level. Currently, soil mineral nitrogen (SMN) at the beginning of spring growth is commonly used as an indicator for calculation of N fertilization rates in spring. However, amounts of SMN at the beginning of spring growth under OSR are usually low and canopy N is only taken into account to a very limited extent. This might lead to N fertilization rates exceeding the optimum N fertilization rate (N opt ). In the present study, the effects of SMN in spring and of canopy N in autumn and spring on N opt were investigated. Multi-site field trials producing different crop canopies, as a result of two sowing dates and two autumn N fertilization levels, with five spring N fertilization levels (0–280 kg N/ha) were carried out in 2005/06 and 2006/07. N opt in spring was estimated by quadratic response functions using the combine-harvested seed yield data from the spring N fertilization treatments. Regression analyses revealed no relationship between N opt and SMN at the beginning of spring growth or canopy N at the beginning of spring growth. In contrast, a significant negative correlation between N opt and canopy N at the end of autumn growth was found. Based on the results of the present study, it is sensible to take autumn canopy N into account when calculating N fertilization rates in spring. If canopy N in autumn is high (>50 kg N/ha), as a consequence, N fertilization rates should be reduced.


Plant and Soil | 1997

Is low rooting density of faba beans a cause of high residual nitrate content of soil at harvest

Henning Kage

It was the aim of this study was to evaluate the hypothesis that low rooting density of faba beans is the major reason for the comparable low depletion of Nmin-nitrogen from the rooted soil volume during the vegetation period. Therefore a simulation study was carried out using data from a two-year field experiment with faba beans and the reference crop oats. Since the nitrate dynamics in the soil is closely coupled with the water budget, the model simulated also the water uptake by plants, movement and content in the soil applying a numerical solution of the Richards equation. The nitrogen budget part of the model includes calculation of vertical nitrate movement in the soil, mineralisation of nitrate from organic matter and nitrate uptake by the crop. Vertical nitrate movement was simulated with the convection-dispersion equation. Mineralisation was computed from a simple first order kinetic approach using only one fraction of mineralisable organic matter. Nitrate uptake was assumed to be determined either by the nitrogen demand of the crop, which was estimated from a logistic growth equation that was fitted to measured data of N-accumulation, or by the maximum nitrate transport rate towards the root surface. The latter was computed from a steady state solution of the diffusion - mass flow equation for cylindrical co-ordinates.For oats the model calculated a maximum nitrate transport rate towards roots that was quite close to the measured N-uptake of that crop. For faba beans, however, the calculated maximum nitrate transport towards roots was much lower than total N-uptake and lower than for oats. Consequently, simulated Nmin-contents below faba beans were during the growing season about 20-30 kg N ha−1 higher than below oats. This difference matches quite close with the observed differences between the two crops. Therefore it was concluded that low nitrate uptake resulting from low rooting density is the main reason for higher residual nitrate contents below faba beans at harvest time.


The Journal of Agricultural Science | 2003

Aspects of nitrogen use efficiency of cauliflower I. A simulation modelling based analysis of nitrogen availability under field conditions

Henning Kage; C. Alt; Hartmut Stützel

Data from several field experiments (eight crops grown under a widely varying nitrogen supply on a loess loam soil) were used for a simulation modelling based analysis of nitrogen availability of cauliflower. The model was built out of components describing root growth, nitrate transport to the roots and the vertical nitrate transport within the soil. Root observations obtained over 2 years indicated an increased fraction of dry matter allocated to the fine roots under N deficiency. An adopted version of a root growth model for cauliflower described the rooting data with an R 2 =0·75. Based upon an acceptable description of the soil water budget, vertical nitrate movement during the growth period of cauliflower was accurately described. The magnitude of this movement, however, was limited to soil depths of about 60 cm even after periods of high rainfall, because of a high soil water holding capacity. An analysis of the factors determining nitrate availability indicated that apparent mass flow was only of high importance for conditions of extremely high N supply where high amounts of nitrate nitrogen remain in the soil up to the end of the growing season. Otherwise, the dominating fraction of nitrate has to be transported to the roots by diffusion. Single root model based calculations of maximum nitrate transport to roots overestimated N availability as indicated by estimates of critical soil nitrate N that were too low. The introduction of a restricted uptake activity period of the roots was used to bridge the gap between theoretical calculations and empirical results. Scenario calculations were carried out to obtain functional relationships between N supply and residual soil nitrate levels for different soil conditions and management practices.


The Journal of Agricultural Science | 2013

Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems

Antje Herrmann; K. Sieling; Babette Wienforth; F. Taube; Henning Kage

The expansion of biogas production in Germany poses a challenge in terms of the production of substrates for co-fermentation and the efficient use of biogas residues as fertilizers. At present there is limited information on the fertilizer value of biogas residues from energy-cropping systems. A 2-year field experiment was conducted at two sites in northern Germany to quantify the yield, nitrogen (N) concentration and the N balance of maize ( Zea mays L.) grown in different crop rotations: (i) maize monoculture (R1), (ii) maize – whole-crop wheat followed by Italian ryegrass as catch crop (R2) and (iii) maize – grain wheat followed by mustard as catch crop (R3). Crops were fertilized with different levels of biogas residues, cattle slurry, pig slurry, or mineral N fertilizer, which allowed quantification of the apparent N recovery (ANR) of the fertilizer types tested. The results revealed that crop rotation in interaction with N amount had a pronounced effect on the yield of maize. Maximum yield of 19·1 t dry matter (DM)/ha, corresponding to biogas production of 6685 m 3 N CH 4 /ha, was achieved in maize monoculture on a sandy loam site. Maize grown in R3 showed the lowest N response but had the highest yield under low N supply, whereas R2 generally had the lowest yield and N content. Differences in yield performance were reflected in the N balances, differing by 50 kg N/ha between R1 and R2, whereas R3 produced the lowest yield at low N supply. The carry-over effects from the preceding catch crops in R2 and R3, however, reduce the meaningfulness of the simple N balance. Nitrogen fertilizer type showed no interaction with crop rotation. Biogas residue application resulted in similar maize yielding performance to pig slurry and cattle slurry. However, relative N fertilizer value (RNFV) was 30% higher for biogas residue at optimal N supply, i.e. the minimum N input to achieve maximum DM yield.

Collaboration


Dive into the Henning Kage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Dittert

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge