Henning Kirst
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henning Kirst.
Plant Physiology | 2012
Henning Kirst; José G. García-Cerdán; Andreas Zurbriggen; Thilo Ruehle; Anastasios Melis
The truncated light-harvesting antenna size3 (tla3) DNA insertional transformant of Chlamydomonas reinhardtii is a chlorophyll-deficient mutant with a lighter green phenotype, a lower chlorophyll (Chl) per cell content, and higher Chl a/b ratio than corresponding wild-type strains. Functional analyses revealed a higher intensity for the saturation of photosynthesis and greater light-saturated photosynthetic activity in the tla3 mutant than in the wild type and a Chl antenna size of the photosystems that was only about 40% of that in the wild type. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western-blot analyses showed that the tla3 strain was deficient in the Chl a/b light-harvesting complex. Molecular and genetic analyses revealed a single plasmid insertion in chromosome 4 of the tla3 nuclear genome, causing deletion of predicted gene g5047 and plasmid insertion within the fourth intron of downstream-predicted gene g5046. Complementation studies defined that gene g5047 alone was necessary and sufficient to rescue the tla3 mutation. Gene g5047 encodes a C. reinhardtii homolog of the chloroplast-localized SRP43 signal recognition particle, whose occurrence and function in green microalgae has not hitherto been investigated. Biochemical analysis showed that the nucleus-encoded and chloroplast-localized CrCpSRP43 protein specifically operates in the assembly of the peripheral components of the Chl a/b light-harvesting antenna. This work demonstrates that cpsrp43 deletion in green microalgae can be employed to generate tla mutants with a substantially diminished Chl antenna size. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.
Biochimica et Biophysica Acta | 2014
Henning Kirst; Cinzia Formighieri; Anastasios Melis
A phycocyanin-deletion mutant of Synechocystis (cyanobacteria) was generated upon replacement of the CPC-operon with a kanamycin resistance cassette. The Δcpc transformant strains (Δcpc) exhibited a green phenotype, compared to the blue-green of the wild type (WT), lacked the distinct phycocyanin absorbance at 625nm, and had a lower Chl per cell content and a lower PSI/PSII reaction center ratio compared to the WT. Molecular and genetic analyses showed replacement of all WT copies of the Synechocystis DNA with the transgenic version, thereby achieving genomic DNA homoplasmy. Biochemical analyses showed the absence of the phycocyanin α- and β-subunits, and the overexpression of the kanamycin resistance NPTI protein in the Δcpc. Physiological analyses revealed a higher, by a factor of about 2, intensity for the saturation of photosynthesis in the Δcpc compared to the WT. Under limiting intensities of illumination, growth of the Δcpc was slower than that of the WT. This difference in the rate of cell duplication diminished gradually as growth irradiance increased. Identical rates of cell duplication of about 13h for both WT and Δcpc were observed at about 800μmolphotonsm(-2)s(-1) or greater. Culture productivity analyses under simulated bright sunlight and high cell-density conditions showed that biomass accumulation by the Δcpc was 1.57-times greater than that achieved by the WT. Thus, the work provides first-time direct evidence of the applicability of the Truncated Light-harvesting Antenna (TLA)-concept in cyanobacteria, entailing substantial improvements in the photosynthetic efficiency and productivity of mass cultures upon minimizing the phycobilisome light-harvesting antenna size.
Plant Physiology | 2012
Henning Kirst; José G. García-Cerdán; Andreas Zurbriggen; Anastasios Melis
The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater Pmax values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.
Biotechnology Advances | 2014
Henning Kirst; Anastasios Melis
The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated.
Philosophical Transactions of the Royal Society B | 2012
Mautusi Mitra; Henning Kirst; David Dewez; Anastasios Melis
Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.
Journal of Applied Phycology | 2015
Julie E. Chaves; Henning Kirst; Anastasios Melis
Photosynthesis for the generation of isoprene in cyanobacteria was demonstrated with Synechocystis, entailing a process where a single host microorganism acts as both photocatalyst and processor, photosynthesizing and emitting isoprene hydrocarbons. A practical aspect of the commercial exploitation of this process in mass culture is the need to prevent invading microorganisms that might cause a culture to crash, and to provide an alternative to freshwater in scale-up applications. Growth media poised at alkaline pH are desirable in this respect, as high pH might favor the growth of the cyanobacteria, while at the same time discouraging the growth of invading predatory microbes and grazers. In addition, demonstration of salinity tolerance would enable the use of seawater for cyanobacteria cultivations. However, it is not known if Synechocystis growth and the isoprene-producing metabolism can be retained under such theoretically non-physiological conditions. We applied the gaseous/aqueous two-phase photobioreactor system with Synechocystis transformed with the isoprene synthase gene (SkIspS) of Pueraria montana (kudzu). Rates of growth and isoprene production are reported under control, and a combination of alkalinity and salinity conditions. The results showed that alkalinity and salinity do not exert a negative effect on either cell growth or isoprene production rate and yield in Synechocystis. The work points to a practical approach in the design of cyanobacterial growth media for applications in commercial scale-up and isoprene production.
Planta | 2018
Henning Kirst; Yanxin Shen; Evangelia Vamvaka; Nico Betterle; Dongmei Xu; Ujwala Warek; James Arthur Strickland; Anastasios Melis
Main conclusionDownregulation in the expression of the signal recognition particle 43 (SRP43) gene in tobacco conferred a truncated photosynthetic light-harvesting antenna (TLA property), and resulted in plants with a greater leaf-to-stem ratio, improved photosynthetic productivity and canopy biomass accumulation under high-density cultivation conditions.Evolution of sizable arrays of light-harvesting antennae in all photosynthetic systems confers a survival advantage for the organism in the wild, where sunlight is often the growth-limiting factor. In crop monocultures, however, this property is strongly counterproductive, when growth takes place under direct and excess sunlight. The large arrays of light-harvesting antennae in crop plants cause the surface of the canopies to over-absorb solar irradiance, far in excess of what is needed to saturate photosynthesis and forcing them to engage in wasteful dissipation of the excess energy. Evidence in this work showed that downregulation by RNA-interference approaches of the Nicotiana tabacum signal recognition particle 43 (SRP43), a nuclear gene encoding a chloroplast-localized component of the photosynthetic light-harvesting assembly pathway, caused a decrease in the light-harvesting antenna size of the photosystems, a corresponding increase in the photosynthetic productivity of chlorophyll in the leaves, and improved tobacco plant canopy biomass accumulation under high-density cultivation conditions. Importantly, the resulting TLA transgenic plants had a substantially greater leaf-to-stem biomass ratio, compared to those of the wild type, grown under identical agronomic conditions. The results are discussed in terms of the potential benefit that could accrue to agriculture upon application of the TLA-technology to crop plants, entailing higher density planting with plants having a greater biomass and leaf-to-stem ratio, translating into greater crop yields per plant with canopies in a novel agronomic configuration.
Archive | 2018
Henning Kirst; Anastasios Melis
Application of the Truncated Light-harvesting Antenna (TLA) concept in photosynthesis entails a determined genetic engineering effort to minimize the light-harvesting antenna size of the photosystems in order to increase solar energy conversion efficiencies and the photosynthetic productivity of cyanobacteria and microalgae in mass cultures under bright sunlight cultivation conditions. Evidence in the literature supports the notion that TLA technology can significantly improve sunlight-to-product (e.g., biomass or hydrogen) energy conversion efficiencies. Approaches to generate TLA-strains in cyanobacteria and microalgae and their functional properties are summarized and discussed in this chapter. TLA-cyanobacteria were generated upon genetic deletion of the cpc operon, encoding phycocyanin and associated components of the phycobilisome peripheral rods. In the case of microalgae, recent advances on the assembly mechanism for the peripheral chlorophyll a-b light-harvesting complex enabled application of genes and proteins of the chloroplast Signal-Recognition Particle (CpSRP) pathway toward the attainment of green microalgal TLA-strains. These advances have expanded the molecular tool box by which to generated TLA-microalgae and, recently, TLA-diatoms. Substantial mechanistic and functional differences between the CpSRP pathway in microalgae and higher plants are outlined and discussed, showing that the CpSRP pathway cannot be equally applied for TLA strain generation in green microalgae and higher plants. The recent application of TLA-technology in green microalgae and cyanobacteria showed an interim increase in the sunlight-to-biomass energy conversion efficiency in the range of 1.5–1.6-fold over that measured with the corresponding wild type. However, it was estimated that the theoretically maximum potential of the TLA technology is an improvement in the solar-to-biomass energy conversion efficiency of microalgae by up to 3-fold over what can be achieved with wild type strains. In summary, current TLA-technology has shown significant improvement in the sunlight-to-biomass or sunlight-to-H2 energy conversion efficiency. Nonetheless, there is room for further improvement in solar energy conversion efficiency and yields, moving the process of photosynthesis from the current best 2–3% solar-to-biomass measured with green microalgae up to the theoretical maximum of 8–10% for the process of photosynthesis.
Journal of Experimental Botany | 2018
Jooyeon Jeong; Kwangryul Baek; Jihyeon Yu; Henning Kirst; Nico Betterle; Woongghi Shin; Sangsu Bae; Anastasios Melis; EonSeon Jin
The Chlamydomonas reinhardtii LTD null mutant generated by CRISPR–Cas9, displayed aberrant PSI–LHCI holocomplexes, suggesting that the LTD protein may selectively function in PSI–LHCI assembly in green microalgae
Bioenergy Research | 2012
Andreas Zurbriggen; Henning Kirst; Anastasios Melis