Henning Vollmann
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henning Vollmann.
Brain Stimulation | 2013
Henning Vollmann; Virginia Conde; Sebastian Sewerin; Marco Taubert; Bernhard Sehm; Otto W. Witte; Arno Villringer; Patrick Ragert
BACKGROUND Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) has been shown to modulate cortical excitability and thereby influencing motor behaviour and learning. HYPOTHESIS While there is increasing knowledge about the importance of the primary motor cortex (M1) in short- and long-term motor skill learning, little is known about the role of secondary motor areas such as the supplementary and pre-supplementary motor area (SMA/pre-SMA) especially in short-term motor performance. Since SMA but not pre-SMA is directly connected to M1, we hypothesize that anodal tDCS over SMA but not pre-SMA will facilitate visuomotor learning. METHODS We applied anodal tDCS (tDCS(anodal)) over left SMA, pre-SMA or M1 (n=12 in each group) while subjects performed a visuomotor pinch force task (VPFT) with their right hand and compared VPFT performance relative to sham (tDCS(sham)). RESULTS For the first time, we could show that apart from tDCS(anodal) over left M1 also SMA but not pre-SMA stimulation promotes short-term improvements in visuomotor learning relative to tDCS(sham). CONCLUSIONS Our findings provide novel evidence about the role of SMA in short-term visuomotor performance. This knowledge might be beneficial in developing hypothesis-driven clinical studies in neurorehabilitation.
NeuroImage | 2012
Virginia Conde; Henning Vollmann; Bernhard Sehm; Marco Taubert; Arno Villringer; Patrick Ragert
Non-invasive brain stimulation protocols in general and paired associative stimulation (PAS) in particular seem to alter corticospinal excitability and thereby to influence behaviour with a high degree of inter-subject variability. The cause of this variability is multidimensional and to some extent still unknown. Here, we tested the hypothesis that individual variations in cortical thickness can explain some of the variability of PAS-induced excitability changes. Ten minutes of a facilitatory PAS protocol (PAS(LTP)) rapidly increased corticospinal excitability in the majority of the subjects (14/19 subjects) while others showed no such effect (5/19 subjects). A whole brain correlation analysis based on high resolution T1-weighted images revealed a significant positive relationship of PAS(LTP)-induced excitability changes with cortical thickness of the underlying left sensorimotor cortex (SM1) only. Cortical thickness alone, among other potential influencing factors, explained about half of the PAS(LTP) variance, indicating that subjects with a strong after-effect were those with thicker gray matter in this region. Based on these findings, we provide novel evidence that local brain structure influences the individual amount of functional plasticity induced by PAS(LTP). While the underlying neurophysiological and/or anatomical reasons for this effect still remain elusive at this point, we conclude that cortical thickness should be considered as an important and until now not recognized modulating factor in studies employing non-invasive brain stimulation techniques.
Frontiers in Systems Neuroscience | 2012
Martin Gryga; Marco Taubert; Juergen Dukart; Henning Vollmann; Virginia Conde; Bernhard Sehm; Arno Villringer; Patrick Ragert
Long-term motor skill learning has been consistently shown to result in functional as well as structural changes in the adult human brain. However, the effect of short learning periods on brain structure is not well understood. In the present study, subjects performed a sequential pinch force task (SPFT) for 20 min on 5 consecutive days. Changes in brain structure were evaluated with anatomical magnetic resonance imaging (MRI) scans acquired on the first and last day of motor skill learning. Behaviorally, the SPFT resulted in sequence-specific learning with the trained (right) hand. Structural gray matter (GM) alterations in left M1, right ventral premotor cortex (PMC) and right dorsolateral prefrontal cortex (DLPFC) correlated with performance improvements in the SPFT. More specifically we found that subjects with strong sequence-specific performance improvements in the SPFT also had larger increases in GM volume in the respective brain areas. On the other hand, subjects with small behavioral gains either showed no change or even a decrease in GM volume during the time course of learning. Furthermore, cerebellar GM volume before motor skill learning predicted (A) individual learning-related changes in the SPFT and (B) the amount of structural changes in left M1, right ventral PMC and DLPFC. In summary, we provide novel evidence that short-term motor skill learning is associated with learning-related structural brain alterations. Additionally, we showed that practicing a motor skill is not exclusively accompanied by increased GM volume. Instead, bidirectional structural alterations explained the variability of the individual learning success.
Journal of Neurophysiology | 2013
Virginia Conde; Henning Vollmann; Marco Taubert; Bernhard Sehm; Leonardo G. Cohen; Arno Villringer; Patrick Ragert
Spike timing-dependent plasticity (STDP) has been proposed as one of the key mechanisms underlying learning and memory. Repetitive median nerve stimulation, followed by transcranial magnetic stimulation (TMS) of the contralateral primary motor cortex (M1), defined as paired-associative stimulation (PAS), has been used as an in vivo model of STDP in humans. PAS-induced excitability changes in M1 have been repeatedly shown to be time-dependent in a STDP-like fashion, since synchronous arrival of inputs within M1 induces long-term potentiation-like effects, whereas an asynchronous arrival induces long-term depression (LTD)-like effects. Here, we show that interhemispheric inhibition of the sensorimotor network during PAS, with the peripheral stimulation over the hand ipsilateral to the motor cortex receiving TMS, results in a LTD-like effect, as opposed to the standard STDP-like effect seen for contralateral PAS. Furthermore, we could show that this reversed-associative plasticity critically depends on the timing interval between afferent and cortical stimulation. These results indicate that the outcome of associative stimulation in the human brain depends on functional network interactions (inhibition or facilitation) at a systems level and can either follow standard or reversed STDP-like mechanisms.
Frontiers in Behavioral Neuroscience | 2014
Henning Vollmann; Patrick Ragert; Virginia Conde; Arno Villringer; Joseph Classen; Otto W. Witte; Christopher Steele
Long-term musical expertise has been shown to be associated with a number of functional and structural brain changes, making it an attractive model for investigating use-dependent plasticity in humans. Physiological interhemispheric inhibition (IHI) as examined by transcranial magnetic stimulation has been shown to be correlated with anatomical properties of the corpus callosum as indexed by fractional anisotropy (FA). However, whether or not IHI or the relationship between IHI and FA in the corpus callosum can be modified by different musical training regimes remains largely unknown. We investigated this question in musicians with different requirements for bimanual finger movements (piano and string players) and non-expert controls. IHI values were generally higher in musicians, but differed significantly from non-musicians only in string players. IHI was correlated with FA in the posterior midbody of the corpus callosum across all participants. Interestingly, subsequent analyses revealed that this relationship may indeed be modulated by different musical training regimes. Crucially, while string players had greater IHI than non-musicians and showed a positive structure-function relationship, the amount of IHI in pianists was comparable to that of non-musicians and there was no significant structure-function relationship. Our findings indicate instrument specific use-dependent plasticity in both functional (IHI) and structural (FA) connectivity of motor related brain regions in musicians.
BMC Neuroscience | 2011
Sebastian Sewerin; Marco Taubert; Henning Vollmann; Virginia Conde; Arno Villringer; Patrick Ragert
BackgroundRepeated application of paired-pulse TMS over the primary motor cortex (M1) in human subjects with an inter-pulse interval (IPI) of 1.5 ms (iTMS1.5 ms) has been shown to significantly increase paired-pulse MEP (ppMEP) amplitudes during the stimulation period and increased single-pulse MEP amplitudes for up to 10 minutes after termination of iTMS.ResultsHere we show in a cross-over design that a modified version of the iTMS1.5 ms protocol with an I-wave periodicity adjusted to the individual I1-peak wave latency (iTMSadj) resulted in a stronger effect on ppMEPs relative to iTMS1.5 ms.ConclusionsBased on these findings, our results indicate that the efficiency of iTMS strongly depends on the individual choice of the IPI and that parameter optimization of the conventional iTMS1.5 ms protocol might improve the outcome of this novel non-invasive brain stimulation technique.
Klinische Neurophysiologie | 2013
Henning Vollmann; Christopher Steele; Virginia Conde; Joseph Claßen; Arno Villringer; Patrick Ragert
Klinische Neurophysiologie | 2011
Henning Vollmann; V.C. Ruiz; Marco Taubert; O.W. Witte; Arno Villringer; Patrick Ragert
55th Annual Meeting of Society for Clinical Neurophysiology and Functional Imaging | 2011
Henning Vollmann; Virginia Conde; Bernhard Sehm; Arno Villringer; Patrick Ragert
41th Annual Meeting of the Society of Neuroscience (SfN) | 2011
Patrick Ragert; Henning Vollmann; Bernhard Sehm; Marco Taubert; Arno Villringer; Virginia Conde