Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henri Grosjean is active.

Publication


Featured researches published by Henri Grosjean.


Gene | 1982

Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes

Henri Grosjean; Walter Fiers

By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.


Nucleic Acids Research | 2006

MODOMICS: a database of RNA modification pathways

Stanislaw Dunin-Horkawicz; Anna Czerwoniec; Michal J. Gajda; Marcin Feder; Henri Grosjean; Janusz M. Bujnicki

MODOMICS is the first comprehensive database resource for systems biology of RNA modification. It integrates information about the chemical structure of modified nucleosides, their localization in RNA sequences, pathways of their biosynthesis and enzymes that carry out the respective reactions. MODOMICS also provides literature information, and links to other databases, including the available protein sequence and structure data. The current list of modifications and pathways is comprehensive, while the dataset of enzymes is limited to Escherichia coli and Saccharomyces cerevisiae and sequence alignments are presented only for tRNAs from these organisms. RNAs and enzymes from other organisms will be included in the near future. MODOMICS can be queried by the type of nucleoside (e.g. A, G, C, U, I, m1A, nm5s2U, etc.), type of RNA, position of a particular nucleoside, type of reaction (e.g. methylation, thiolation, deamination, etc.) and name or sequence of an enzyme of interest. Options for data presentation include graphs of pathways involving the query nucleoside, multiple sequence alignments of RNA sequences and tabular forms with enzyme and literature data. The contents of MODOMICS can be accessed through the World Wide Web at .


Molecular and Cellular Biology | 1999

Pseudouridine Mapping in the Saccharomyces cerevisiae Spliceosomal U Small Nuclear RNAs (snRNAs) Reveals that Pseudouridine Synthase Pus1p Exhibits a Dual Substrate Specificity for U2 snRNA and tRNA

Séverine Massenet; Yuri Motorin; Denis L. J. Lafontaine; Eduard C. Hurt; Henri Grosjean; Christiane Branlant

ABSTRACT Pseudouridine (Ψ) residues were localized in theSaccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Ψ residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1,PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Ψ content, only the loss of the Pus1p activity was found to affect Ψ formation in spliceosomal UsnRNAs. Indeed, Ψ44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Ψ44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Ψ content, formation of Ψ residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.


FEBS Letters | 2010

Deciphering synonymous codons in the three domains of life: Co‐evolution with specific tRNA modification enzymes

Henri Grosjean; Valérie de Crécy-Lagard; Christian Marck

The strategies organisms use to decode synonymous codons in cytosolic protein synthesis are not uniform. The complete isoacceptor tRNA repertoire and the type of modified nucleoside found at the wobble position 34 of their anticodons were analyzed in all kingdoms of life. This led to the identification of four main decoding strategies that are diversely used in Bacteria, Archaea and Eukarya. Many of the modern tRNA modification enzymes acting at position 34 of tRNAs are present only in specific domains and obviously have arisen late during evolution. In an evolutionary fine‐tuning process, these enzymes must have played an essential role in the progressive introduction of new amino acids, and in the refinement and standardization of the canonical nuclear genetic code observed in all extant organisms (functional convergent evolutionary hypothesis).


RNA | 1999

Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

Yuri Motorin; Henri Grosjean

Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w.


The EMBO Journal | 2002

Trm7p catalyses the formation of two 2′‐O‐methylriboses in yeast tRNA anticodon loop

Lionel Pintard; François Lecointe; Janusz M. Bujnicki; Claire Bonnerot; Henri Grosjean; Bruno Lapeyre

The genome of Saccharomyces cerevisiae encodes three close homologues of the Escherichia coli 2′‐O‐rRNA methyltransferase FtsJ/RrmJ, designated Trm7p, Spb1p and Mrm2p. We present evidence that Trm7p methylates the 2′‐O‐ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop, both in vivo and in vitro. In a trm7Δ strain, which is viable but grows slowly, translation is impaired, thus indicating that these tRNA modifications could be important for translation efficiency. We discuss the emergence of a family of three 2′‐O‐RNA methyltransferases in Eukaryota and one in Prokaryota from a common ancestor. We propose that each eukaryotic enzyme is located in a different cell compartment, in which it would methylate a different RNA that can adopt a very similar secondary structure.


The EMBO Journal | 1998

Tad1p, a yeast tRNA−specific adenosine deaminase, is related to the mammalian pre−mRNA editing enzymes ADAR1 and ADAR2

André P. Gerber; Henri Grosjean; Thorsten Melcher; Walter Keller

We have identified an RNA‐specific adenosine deaminase (termed Tad1p/scADAT1) from Saccharomyces cerevisiae that selectively converts adenosine at position 37 of eukaryotic tRNAAla to inosine. The activity of purified recombinant Tad1p depends on the conformation of its tRNA substrate and the enzyme was found to be inactive on all other types of RNA tested. Mutant strains in which the TAD1 gene is disrupted are viable but lack Tad1p enzyme activity and their tRNAAla is not modified at position A37. Transformation of the mutant cells with the TAD1 gene restored enzyme activity. Tad1p has significant sequence similarity with the mammalian editing enzymes which act on specific precursor‐mRNAs and on long double‐stranded RNA. These findings suggest an evolutionary link between pre‐mRNA editing and tRNA modification.


The EMBO Journal | 1985

Queuosine modification of the wobble base in tRNAHis influences in vivo decoding properties

F Meier; B Suter; Henri Grosjean; Gérard Keith; E Kubli

The ‘in vivo’ decoding properties of four tRNAHis isoacceptors, two from Drosophila melanogaster and two from brewers yeast, were studied after their microinjection, along with turnip yellow mosaic virus (TYMV) coat protein mRNA, into Xenopus laevis oocytes. The two Drosophila isoacceptors are identical besides containing either a guanosine (G) or the hypermodified nucleoside queuosine (Q) in the wobble position. The brewers yeast isoacceptors differ by four bases in the anticodon stem, and by one base in the amino acceptor stem. Our results show that, under competing ‘in vivo’ conditions, the Drosophila tRNAHis with the anticodon GUG clearly prefers the histidine codon CAC to the codon CAU, whereas little preference is observed for the tRNAHis with the anticodon QUG for the codon CAU, and no preference for either codon by the two yeast isoacceptors. Hence, it can be concluded that the presence of the Q‐base clearly affects the choice of the codon. This is the first demonstration of an ‘in vivo’ codon preference by tRNA isoacceptors differing in the modification of the wobble base during the elongation step of protein synthesis. These results imply that one function of the Q‐base is at the translational level.


Biochimie | 1990

Conformation in solution of yeast tRNAAsp transcripts deprived of modified nucleotides

Véronique Perret; Angela Garcia; Joseph D. Puglisi; Henri Grosjean; Jean-Pierre Ebel; Catherine Florentz; Richard Giegé

A synthetic gene of yeast aspartic acid tRNA with a promoter for phage T7 RNA polymerase was cloned in Escherichia coli. The in vitro transcribed tRNA(Asp) molecules are deprived of modified nucleotides and retain their aspartylation capacity. The solution conformation of these molecules was mapped with chemical structural probes and compared to that of fully modified molecules. Significant differences in reactivities were observed in Pb2+ cleavage of the RNAs and in modification of the bases with dimethyl sulphate. The most striking result concerns C56, which becomes reactive in unmodified tRNA(Asp), indicating the disruption of the C56-G19 base pair involved in the D- and T-loop interaction. The chemical data indicate that unmodified tRNA(Asp) transcripts possess a relaxed conformation compared to that of the native tRNA. This conclusion is confirmed by thermal melting experiments. Thus it can be proposed that post-transcriptional modifications of nucleotides in tRNA stabilize the biologically active conformations in these molecules.


RNA | 1998

The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity

Yuri Motorin; G. Keith; C. Simon; D. Foiret; G. Simos; Ed Hurt; Henri Grosjean

We have previously shown that the yeast gene PUS1 codes for a tRNA:pseudouridine synthase and that recombinant Pus1p catalyzes, in an intron-dependent way, the formation of psi34 and psi36 in the anticodon loop of the yeast minor tRNA(Ile) in vitro (Simos G et al., 1996, EMBO J 15:2270-2284). Using a set of T7 transcripts of different tRNA genes, we now demonstrate that yeast pseudouridine synthase 1 catalyzes in vitro pseudouridine formation at positions 27 and/or 28 in several yeast cytoplasmic tRNAs and at position 35 in the intron-containing tRNA(Tyr) (anticodon GUA). Thus, Pus1p not only displays a broad specificity toward the RNA substrates, but is also capable of catalyzing the pseudouridine (psi) formation at distinct noncontiguous sites within the same tRNA molecule. The cell-free extract prepared from the yeast strain bearing disrupted gene PUS1 is unable to catalyze the formation of psi27, psi28, psi34, and psi36 in vitro, however, psi35 formation in the intron-containing tRNA(Tyr)(GUA) remains unaffected. Thus, in yeast, only one gene product accounts for tRNA pseudouridylation at positions 27, 28, 34, and 36, whereas for position 35 in tRNA(Tyr), another site-specific tRNA:pseudouridine synthase with overlapping specificity exists. Mapping of pseudouridine residues present in various tRNAs extracted from the PUS1-disrupted strain confirms the in vitro data obtained with the recombinant Pus1p. In addition, they suggest that Pus1p is implicated in modification at positions U26, U65, and U67 in vivo.

Collaboration


Dive into the Henri Grosjean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Droogmans

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Suzanne De Henau

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Richard Giegé

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Etienne Haumont

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Keith

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Auxilien

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge