Henri-Pierre Lassalle
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henri-Pierre Lassalle.
BMC Cancer | 2008
Anne Robe; Emilie Pic; Henri-Pierre Lassalle; Lina Bezdetnaya; François Guillemin; Frédéric Marchal
BackgroundBreast cancer is the first cause of cancer death among women and its incidence doubled in the last two decades. Several approaches for the treatment of these cancers have been developed. The axillary lymph node dissection (ALND) leads to numerous morbidity complications and is now advantageously replaced by the dissection and the biopsy of the sentinel lymph node. Although this approach has strong advantages, it has its own limitations which are manipulation of radioactive products and possible anaphylactic reactions to the dye. As recently proposed, these limitations could in principle be by-passed if semiconductor nanoparticles (quantum dots or QDs) were used as fluorescent contrast agents for the in vivo imaging of SLN. QDs are fluorescent nanoparticles with unique optical properties like strong resistance to photobleaching, size dependent emission wavelength, large molar extinction coefficient, and good quantum yield.MethodsCdSe/ZnS core/shell QDs emitting around 655 nm were used in our studies. 20 μL of 1 μM (20 pmol) QDs solution were injected subcutaneously in the anterior paw of healthy nude mice and the axillary lymph node (ALN) was identified visually after injection of a blue dye. In vivo fluorescence spectroscopy was performed on ALN before the mice were sacrificed at 5, 15, 30, 60 min and 24 h after QDs injection. ALN and all other organs were removed, cryosectioned and observed in fluorescence microscopy. The organs were then chemically made soluble to extract QDs. Plasmatic, urinary and fecal fluorescence levels were measured.ResultsQDs were detected in ALN as soon as 5 min and up to 24 h after the injection. The maximum amount of QDs in the ALN was detected 60 min after the injection and corresponds to 2.42% of the injected dose. Most of the injected QDs remained at the injection site. No QDs were detected in other tissues, plasma, urine and feces.ConclusionEffective and rapid (few minutes) detection of sentinel lymph node using fluorescent imaging of quantum dots was demonstrated. This work was done using very low doses of injected QDs and the detection was done using a minimally invasive method.
Journal of Controlled Release | 2009
Henri-Pierre Lassalle; Dominique Dumas; Susanna Gräfe; Marie-Ange D'Hallewin; Francois H. Guillemin; Lina Bezdetnaya
Foslip is a recently designed third generation photosensitiser based on unilamellar dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC/DPPG) liposomal formulations of meta-tetra(hydroxyphenyl)chlorine (mTHPC). The present study investigates Foslip behaviour and its photodynamic efficiency in EMT6 xenografted nude mice at different times following i.v. administration of 0.3 mg kg(-1) mTHPC in a Foslip formulation. Plasma pharmacokinetics and biodistribution were studied by high performance liquid chromatography and were described by a three compartments analysis with half-lifes of 0.13, 4.31 and 35.7 h. The highest tumour to muscle ratios were observed at 6 and 15 h post-administration. Intratumoral distribution was carried out using two photon excitation confocal microscopy. Progressive efflux from the vascular compartment was noted in favour of tumour parenchyma, which was almost completed at 15 h. The best tumour response was obtained for a drug-light interval of 6 h, interval for which mTHPC was present in both endothelial and parenchyma cells. Tumour and plasma concentrations however were far below their maximal values. Based on these observations, we assume that the presence of mTHPC in both vasculature and tumour cells is required for optimal PDT efficacy.
International Journal of Nanomedicine | 2013
Vadzim Reshetov; Henri-Pierre Lassalle; Aurélie François; Dominique Dumas; Sébastien Hupont; Susanna Gräfe; Vasco Filipe; Wim Jiskoot; François Guillemin; Vladimir Zorin; Lina Bezdetnaya
A major challenge in the application of a nanoparticle-based drug delivery system for anticancer agents is the knowledge of the critical properties that influence their in vivo behavior and the therapeutic performance of the drug. The effect of a liposomal formulation, as an example of a widely-used delivery system, on all aspects of the drug delivery process, including the drug’s behavior in blood and in the tumor, has to be considered when optimizing treatment with liposomal drugs, but that is rarely done. This article presents a comparison of conventional (Foslip®) and polyethylene glycosylated (Fospeg®) liposomal formulations of temoporfin (meta-tetra[hydroxyphenyl]chlorin) in tumor-grafted mice, with a set of comparison parameters not reported before in one model. Foslip® and Fospeg® pharmacokinetics, drug release, liposome stability, tumor uptake, and intratumoral distribution are evaluated, and their influence on the efficacy of the photodynamic treatment at different light–drug intervals is discussed. The use of whole-tumor multiphoton fluorescence macroscopy imaging is reported for visualization of the in vivo intratumoral distribution of the photosensitizer. The combination of enhanced permeability and retention-based tumor accumulation, stability in the circulation, and release properties leads to a higher efficacy of the treatment with Fospeg® compared to Foslip®. A significant advantage of Fospeg® lies in a major decrease in the light–drug interval, while preserving treatment efficacy.
Journal of Photochemistry and Photobiology B-biology | 2008
Henri-Pierre Lassalle; Michael Wagner; Lina Bezdetnaya; Francois H. Guillemin; Herbert Schneckenburger
A fluorescence microscope equipped with a condenser for total internal reflection (TIR) illumination was combined with a pulsed laser diode and a time-gated image intensifying camera for fluorescence lifetime measurements of single cells. In particular, fluorescence patterns, decay kinetics, and lifetime images of the lipophilic photosensitizers Foscan and Foslip were studied in whole cells as well as in close vicinity to their plasma membranes. Fluorescence lifetimes of both photosensitizers in cultivated HeLa cells decreased from about 8 ns at an incubation time of 3 h to about 5 ns at an incubation time of 24 h. This seems to result from an increase in aggregation (or self-quenching) of the photosensitizers during incubation. Selective measurements within or in close proximity to the plasma membrane indicate that Foscan and Foslip are taken up by the cells in a similar way, but may be located in different cellular sites after an incubation time of 24 h. A combination of TIR and fluorescence lifetime imaging microscopy (FLIM), described for the first time, appears to be promising for understanding some key mechanisms of photodynamic therapy (PDT).
Current Drug Metabolism | 2012
Henri-Pierre Lassalle; Sophie Marchal; François Guillemin; Aurelie Reinhard; Lina Bezdetnaya
Nucleic acid aptamers are molecules that are being used in a large number of biomedical applications. Aptamers have the properties to bind to a wide range of molecules with high specificity and affinity for their target. These properties together with their small size and their ease of synthesis make them very attractive and promising for targeting diseases and therapeutic applications. Aptamers can serve as cancer diagnostic tools by detecting specific biomarkers, circulating cancer cells or imaging diseased tissue. On the other hand, aptamers can be used as therapeutic agents due to their potential antagonist activity, or as targeting agents. Therefore, they can be designed to deliver antitumor molecules such as chemotherapeutic drugs, siRNA or photodynamic therapy sensitizers to diseased tissues. Attempts are also made to synthesize aptamers-targeted nanoplatforms capable to ferry cargo and load onto them both imaging and therapeutic functions creating so called nanotheragnostics agents. In the future, its seems likely that aptamers will play an important role in diagnosis and treatment of several pathologies including cancer.
European Journal of Pharmaceutical Sciences | 2016
Igor Yankovsky; Estelle Bastien; Ilya Yakavets; Ivan I. Khludeyev; Henri-Pierre Lassalle; Susanna Gräfe; Lina Bezdetnaya; Vladimir Zorin
Application of meta-tetra(hydroxyphenyl)chorin (mTHPC) one of the most effective photosensitizer (PS) in photodynamic therapy of solid tumors encounters several complications resulting from its insolubility in aqueous medium. To improve its solubility and pharmacokinetic properties, two modified β-cyclodextrins (β-CDs) methyl-β-cyclodextrin (M-β-CD) and 2-hydroxypropyl-β-cyclodextrin (Hp-β-CD) were proposed. The aim of this work was to evaluate the effect of β-CDs on mTHPC behavior at various stages of its distribution in vitro and in vivo. For this purpose, we have studied the influence of the β-CDs on mTHPC binding to the serum proteins, its accumulation, distribution and photodynamic efficiency in HT29 cells. In addition, the processes of mTHPC biodistribution in HT29 tumor bearing mice after intravenous injection of PS alone or with the β-CDs were compared. Interaction of mTHPC with studied β-CDs leads to the formation of inclusion complexes that completely abolishes its aggregation after introduction into serum. It was demonstrated that the β-CDs have a concentration-dependent effect on the process of mTHPC distribution in blood serum. At high concentrations, β-CDs can form inclusion complexes with mTHPC in the blood that can have a significant impact on PS distribution out of the vascular system in solid tissues. Besides, the β-CDs increase diffusion movement of mTHPC molecules that can significantly accelerate the delivery of PS to the targets cells and tissues. In vivo study confirms the fact that the use of β-CDs allows to modify mTHPC distribution processes in tumor bearing animals that is reflected in the decreased level of PS accumulation in skin and muscles, as well as in the increased PS accumulation in tumor. Further studies are underway to verify the optimal protocols of mTHPC/β-CD formulation for photodynamic therapy.
Lasers in Medical Science | 2015
Sophie Marchal; Gilles Dolivet; Henri-Pierre Lassalle; François Guillemin; Lina Bezdetnaya
The aim of this article is to give an insight into the future of photodynamic therapy (PDT) in head and neck squamous cell carcinoma (HNSCC). Through the combination of a photosensitizing agent with light and oxygen, PDT produces highly cytotoxic reactive oxygen species leading to selective tumor eradication. PDT is an attractive treatment for focal therapy of localized tumors, especially in the case of unresectable tumors. In HNSCC, over 1500 patients have been treated by PDT, and the majority of them responded quite favorably to this treatment. However, the non-negligible photosensitization of healthy tissue is a major limitation for the clinical application of PDT. Improvement in tumor selectivity is the main challenge that can be taken up by the use of a new generation of photosensitizing nanoparticles. Passive targeting, by using functionalised nanocarriers to target to overexpressed transmembrane receptors afford attractive solutions. To this day, epidermal growth factor receptor (EGFR) remains the only validated molecular target for HNSCC, and photosensitizer immunoconjugates to EGFR have been developed for the intracellular delivery of photosensitizing agents. Depending on coordinated research between biomarkers, specific ligands, and photosensitizers, similar approaches could be rapidly developed. In addition, some photosensitizers hold high fluorescence yield and therefore could emerge as theranostic agents.
Photodiagnosis and Photodynamic Therapy | 2016
Michael Pfitzner; Jan Schlothauer; Estelle Bastien; Steffen Hackbarth; Lina Bezdetnaya; Henri-Pierre Lassalle; Beate Röder
BACKGROUND Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. METHODS A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. RESULTS Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. CONCLUSIONS This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy.
Advances in Optical Technologies | 2008
Michael Wagner; Petra Weber; Wolfgang S. L. Strauss; Henri-Pierre Lassalle; Herbert Schneckenburger
The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM) and its application to nanotomography of cell surfaces are described. Present applications include (1) 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2) measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3) measurements of cell topology upon photodynamic therapy (PDT), which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.
International Journal of Pharmaceutics | 2017
Ilya Yakavets; Igor Yankovsky; Marie Millard; Laureline Lamy; Henri-Pierre Lassalle; Arno Wiehe; Vladimir Zorin; Lina Bezdetnaya
To be effective anticancer drugs must penetrate tissue efficiently, reaching all target population of cancer cells in a concentration sufficient to exert a therapeutic effect. This study aimed to investigate the ability of methyl-β-cyclodextrin (Me-β-CD) and 2-hydroxypropyl-β-cyclodextrin (Hp-β-CD) to alter the penetration and diffusion of temoporfin (mTHPC) in HT29 multicellular tumor spheroids. mTHPC had а nonhomogenous distribution only on the periphery of spheroids. The presence of β-CDs significantly altered the distribution of mTHPC consisting in the increase of both the depth of photosensitizer penetration and accumulation in HT29 spheroids. We suggest that this improvement is related to the nanoshuttle mechanism of β-CD action, when β-CDs facilitate mTHPC transportation to the cells in the inner layers of spheroids. As a result of mTHPC distribution improvement, β-CDs enhance mTHPC photosensitizing activity towards HT29 multicellular tumor spheroids. The observed effects strongly depend on the type of β-CD. Thus, varying the type of β-CD we can finely tune the possibility of using mTHPC for diagnostic (delimitation of tumor margins) or therapeutic purposes.