Henriette Aksnes
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henriette Aksnes.
PLOS ONE | 2011
Kristine Hole; Petra Van Damme; Monica Dalva; Henriette Aksnes; Nina Glomnes; Jan Erik Varhaug; Johan R. Lillehaug; Kris Gevaert; Thomas Arnesen
Protein Nα-terminal acetylation (Nt-acetylation) is considered one of the most common protein modification in eukaryotes, and 80-90% of all soluble human proteins are modified in this way, with functional implications ranging from altered protein function and stability to translocation potency amongst others. Nt-acetylation is catalyzed by N-terminal acetyltransferases (NATs), and in yeast five NAT types are identified and denoted NatA-NatE. Higher eukaryotes additionally express NatF. Except for NatD, human orthologues for all yeast NATs are identified. yNatD is defined as the catalytic unit Naa40p (Nat4) which co-translationally Nt-acetylates histones H2A and H4. In this study we identified and characterized hNaa40p/hNatD, the human orthologue of the yeast Naa40p. An in vitro proteome-derived peptide library Nt-acetylation assay indicated that recombinant hNaa40p acetylates N-termini starting with the consensus sequence Ser-Gly-Gly-Gly-Lys-, strongly resembling the N-termini of the human histones H2A and H4. This was confirmed as recombinant hNaa40p Nt-acetylated the oligopeptides derived from the N-termini of both histones. In contrast, a synthetically Nt-acetylated H4 N-terminal peptide with all lysines being non-acetylated, was not significantly acetylated by hNaa40p, indicating that hNaa40p catalyzed H4 Nα-acetylation and not H4 lysine Nε-acetylation. Also, immunoprecipitated hNaa40p specifically Nt-acetylated H4 in vitro. Heterologous expression of hNaa40p in a yeast naa40-Δ strain restored Nt-acetylation of yeast histone H4, but not H2A in vivo, probably reflecting the fact that the N-terminal sequences of human H2A and H4 are highly similar to each other and to yeast H4 while the N-terminal sequence of yeast H2A differs. Thus, Naa40p seems to have co-evolved with the human H2A sequence. Finally, a partial co-sedimentation with ribosomes indicates that hNaa40p co-translationally acetylates H2A and H4. Combined, our results strongly suggest that human Naa40p/NatD is conserved from yeast. Thus, the NATs of all classes of N-terminally acetylated proteins in humans now appear to be accounted for.
Trends in Biochemical Sciences | 2016
Henriette Aksnes; Adrian Drazic; Michaël Marie; Thomas Arnesen
N-terminal (Nt) acetylation is known to be a highly abundant co-translational protein modification, but the recent discovery of Golgi- and chloroplast-resident N-terminal acetyltransferases (NATs) revealed that it can also be added post-translationally. Nt-acetylation may act as a degradation signal in a novel branch of the N-end rule pathway, whose functions include the regulation of human blood pressure. Nt-acetylation also modulates protein interactions, targeting, and folding. In plants, Nt-acetylation plays a role in the control of resistance to drought and in regulation of immune responses. Mutations of specific human NATs that decrease their activity can cause either the lethal Ogden syndrome or severe intellectual disability and cardiovascular defects. In sum, recent advances highlight Nt-acetylation as a key factor in many biological pathways.
Cell Reports | 2015
Henriette Aksnes; Petra Van Damme; Marianne Goris; Kristian K. Starheim; Michaël Marie; Svein Isungset Støve; Camilla Hoel; Thomas Vikestad Kalvik; Kristine Hole; Nina Glomnes; Clemens Furnes; Sonja Ljostveit; Mathias Ziegler; Marc Niere; Kris Gevaert; Thomas Arnesen
N-terminal acetylation is a major and vital protein modification catalyzed by N-terminal acetyltransferases (NATs). NatF, or Nα-acetyltransferase 60 (Naa60), was recently identified as a NAT in multicellular eukaryotes. Here, we find that Naa60 differs from all other known NATs by its Golgi localization. A new membrane topology assay named PROMPT and a selective membrane permeabilization assay established that Naa60 faces the cytosolic side of intracellular membranes. An Nt-acetylome analysis of NAA60-knockdown cells revealed that Naa60, as opposed to other NATs, specifically acetylates transmembrane proteins and has a preference for N termini facing the cytosol. Moreover, NAA60 knockdown causes Golgi fragmentation, indicating an important role in the maintenance of the Golgis structural integrity. This work identifies a NAT associated with membranous compartments and establishes N-terminal acetylation as a common modification among transmembrane proteins, a thus-far poorly characterized part of the N-terminal acetylome.
International Review of Cell and Molecular Biology | 2015
Henriette Aksnes; Kristine Hole; Thomas Arnesen
Protein N-terminal acetylation is catalyzed by N-terminal acetyltransferases and represents one of the most common protein modifications in eukaryotes. An increasing number of studies report on the importance of N-terminal acetylation for protein degradation, complex formation, subcellular targeting, and protein folding. N-terminal acetyltransferases are recognized to play important roles in a diversity of cellular processes like apoptosis, cell proliferation, sister chromatid cohesion, and chromatin silencing and are even linked to the development of rare genetic disorders and cancer. This article summarizes our current knowledge on the implications of N-terminal acetylation at the protein, cellular, and physiological levels.
PLOS ONE | 2013
Henriette Aksnes; Camilla Osberg; Thomas Arnesen
N-terminal acetylation has been suggested to play a role in the subcellular targeting of proteins, in particular those acetylated by the N-terminal acetyltransferase complex NatC. Based on previous positional proteomics data revealing N-terminal acetylation status and the predicted NAT substrate classes, we selected 13 suitable NatC substrates for subcellular localization studies in Saccharomyces cerevisiae. Fluorescence microscopy analysis of GFP-tagged candidates in the presence or absence of the NatC catalytic subunit Naa30 (Mak3) revealed unaltered localization patterns for all 13 candidates, thus arguing against a general role for the N-terminal acetyl group as a localization determinant. Furthermore, all organelle-localized substrates indicated undisrupted structures, thus suggesting that absence of NatC acetylation does not have a vast effect on organelle morphology in yeast.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Adrian Drazic; Henriette Aksnes; Michaël Marie; Malgorzata Boczkowska; Sylvia Varland; Evy Timmerman; Håvard Foyn; Nina Glomnes; Grzegorz Rebowski; Francis Impens; Kris Gevaert; Roberto Dominguez; Thomas Arnesen
Significance More than 80% of human proteins are N-terminal (Nt)–acetylated during translation. In contrast, actin, the most abundant protein in the cytoplasm of animal cells, is Nt-acetylated posttranslationally and following a unique multistep mechanism that has remained poorly characterized. Here, we describe the discovery of actin’s N-terminal acetyltransferase (NAT), NAA80. We further demonstrate that actin Nt-acetylation plays essential roles in filament assembly, cytoskeleton organization, and cell motility, resulting in a net increase in the ratio of monomeric to filamentous actin and fewer lamellipodia and filopodia. These effects converge to reduce cell hypermotility. This work establishes the role of Nt-acetylation for the most abundant cytoskeletal protein in animals and reveals a NAT acting posttranslationally and on a single dedicated substrate. Actin, one of the most abundant proteins in nature, participates in countless cellular functions ranging from organelle trafficking and pathogen motility to cell migration and regulation of gene transcription. Actin’s cellular activities depend on the dynamic transition between its monomeric and filamentous forms, a process exquisitely regulated in cells by a large number of actin-binding and signaling proteins. Additionally, several posttranslational modifications control the cellular functions of actin, including most notably N-terminal (Nt)-acetylation, a prevalent modification throughout the animal kingdom. However, the biological role and mechanism of actin Nt-acetylation are poorly understood, and the identity of actin’s N-terminal acetyltransferase (NAT) has remained a mystery. Here, we reveal that NAA80, a suggested NAT enzyme whose substrate specificity had not been characterized, is Nt-acetylating actin. We further show that actin Nt-acetylation plays crucial roles in cytoskeletal assembly in vitro and in cells. The absence of Nt-acetylation leads to significant differences in the rates of actin filament depolymerization and elongation, including elongation driven by formins, whereas filament nucleation by the Arp2/3 complex is mostly unaffected. NAA80-knockout cells display severely altered cytoskeletal organization, including an increase in the ratio of filamentous to globular actin, increased filopodia and lamellipodia formation, and accelerated cell motility. Together, the results demonstrate NAA80’s role as actin’s NAT and reveal a crucial role for actin Nt-acetylation in the control of cytoskeleton structure and dynamics.
Trends in Biochemical Sciences | 2015
Henriette Aksnes; Adrian Drazic; Thomas Arnesen
A recent study links N-terminal acetylation and N-end rule degradation to blood pressure regulation. N-terminal mutants of Rgs2, a key G-protein regulator, are differentially processed by N-terminal acetyltransferases and the two branches of the N-end rule pathway. This leads to an imbalance in the signaling governing blood pressure.
Journal of Biological Chemistry | 2017
Henriette Aksnes; Marianne Goris; Øyvind Strømland; Adrian Drazic; Qaiser Waheed; Nathalie Reuter; Thomas Arnesen
Nα-Acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) because it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N termini of the transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to investigate the secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C terminus was unstructured in solution and only folded into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 toward membranes containing the phosphatidylinositol PI(4)P, thus possibly explaining the primary residency of Naa60 at the PI(4)P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.
Scientific Reports | 2016
Camilla Osberg; Henriette Aksnes; Sandra Ninzima; Michaël Marie; Thomas Arnesen
N-terminal acetylation is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) NatA-NatG. The Saccharomyces cerevisiae protein Arl3 depends on interaction with Sys1 for its localization to the Golgi and this targeting strictly requires NatC-mediated N-terminal acetylation of Arl3. We utilized the Arl3 acetylation-dependent localization phenotype as a model system for assessing the functional conservation and in vivo redundancy of several human NATs. The catalytic subunit of human NatC, hNaa30 (Mak3), restored Arl3 localization in the absence of yNaa30, but only in the presence of either yeast or human Naa35 subunit (Mak10). In contrast, hNaa35 was not able to replace its yeast orthologue without the co-expression of hNaa30, suggesting co-evolution of the two NatC subunits. The most recently discovered and organellar human NAT, NatF/Naa60, restored the Golgi localization of Arl3 in the absence of yNaa30. Interestingly, this was also true for hNaa60 lacking its membrane-binding domain whereas hNaa50 did not complement NatC function. This in vivo redundancy reflects NatC and NatF´s overlapping in vitro substrate specificities. The yeast model presented here provides a robust and rapid readout of NatC and NatF activity in vivo, and revealed evolutionary conservation of the NatC complex and redundancy between NatC and NatF.
Communicative & Integrative Biology | 2018
Henriette Aksnes; Michaël Marie; Thomas Arnesen; Adrian Drazic
ABSTRACT Actin is the most abundant protein in our cells, and also one of the most studied. Nevertheless, an important modifier of actin, the N-terminal acetyltransferase (NAT) for actin, remained unknown until now. The recent identification of the enzyme that catalyzes actin acetylation, has opened up for functional studies of unacetylated actin using knockout cells. This enzyme, called NAA80 (Nα-acetyltransferase 80) or NatH, belongs to the NAT family of enzymes, which together provides N-terminal acetylation for around 80 % of the human proteome. In many cases, N-terminal acetylation is essential. In the case of actin, the acetyl group that NAA80 attaches to actin plays an important role in actin’s polymerization properties as well as in actin’s function in cell migration.