Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henriette L. Pedersen is active.

Publication


Featured researches published by Henriette L. Pedersen.


BMC Plant Biology | 2008

Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

Susan E. Marcus; Yves Verhertbruggen; Cécile Hervé; José J. Ordaz-Ortiz; Vladimír Farkaš; Henriette L. Pedersen; William G. T. Willats; J. Paul Knox

BackgroundMolecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.ResultsUsing a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types.ConclusionThese observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.


Journal of Biological Chemistry | 2012

Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

Henriette L. Pedersen; Jonatan U. Fangel; Barry McCleary; Christian Ruzanski; Maja G. Rydahl; Marie-Christine Ralet; Vladimír Farkaš; Laura von Schantz; Susan E. Marcus; Mathias Christian Franch Andersen; Robert A. Field; Mats Ohlin; J. Paul Knox; Mads Hartvig Clausen; William G. T. Willats

Background: Microarrays of plant-derived oligosaccharides are potentially powerful tools for the high throughput discovery and screening of antibodies, enzymes, and carbohydrate-binding proteins. Results: Oligosaccharide microarrays were produced, and their utility was demonstrated in several applications. Conclusion: A new generation of oligosaccharide microarrays will make an important contribution to plant glycomic research. Significance: High throughput screening technology enables the more effective production of carbohydrate active enzymes and molecular probes. Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.


Journal of Biological Chemistry | 2010

Recognition of the Helical Structure of Beta-1,4-Galactan by a New Family of Carbohydrate-binding Modules

Melissa Cid; Henriette L. Pedersen; Satoshi Kaneko; Pedro M. Coutinho; Bernard Henrissat; William G. T. Willats; Alisdair B. Boraston

The microbial enzymes that depolymerize plant cell wall polysaccharides, ultimately promoting energy liberation and carbon recycling, are typically complex in their modularity and often contain carbohydrate-binding modules (CBMs). Here, through analysis of an unknown module from a Thermotoga maritima endo-β-1,4-galactanase, we identify a new family of CBMs that are most frequently found appended to proteins with β-1,4-galactanase activity. Polysaccharide microarray screening, immunofluorescence microscopy, and biochemical analysis of the isolated module demonstrate the specificity of the module, here called TmCBM61, for β-1,4-linked galactose-containing ligands, making it the founding member of family CBM61. The ultra-high resolution x-ray crystal structures of TmCBM61 (0.95 and 1.4 Å resolution) in complex with β-1,4-galactotriose reveal the molecular basis of the specificity of the CBM for β-1,4-galactan. Analysis of these structures provides insight into the recognition of an unexpected helical galactan conformation through a mode of binding that resembles the recognition of starch.


Journal of Biological Chemistry | 2015

A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes

Silvia Vidal-Melgosa; Henriette L. Pedersen; Julia Schückel; Grégory Arnal; Claire Dumon; Daniel Buchvaldt Amby; Rune Nygaard Monrad; Bjørge Westereng; William G. T. Willats

Background: There is a growing discrepancy between the putative identification and the empirical characterization of carbohydrate-active enzymes (CAZymes). Results: We have developed a new versatile and high throughput microarray-based method for screening CAZymes. Conclusion: The method is a powerful addition to the enzyme screening toolbox. Significance: The technique enables the rapid screening of CAZymes and facilitates our biological understanding and industrial utilization. Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.


Journal of Biological Chemistry | 2013

A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night

Christian Ruzanski; Julia B. Smirnova; Martin Rejzek; Darrell Cockburn; Henriette L. Pedersen; Marilyn J. Pike; William G. T. Willats; Birte Svensson; Martin Steup; Oliver Ebenhöh; Alison M. Smith; Robert A. Field

Background: Maltose metabolism during leaf starch degradation requires a multidomain glucanotransferase and a complex polysaccharide. Results: A conventional bacterial glucanotransferase rescues an Arabidopsis mutant lacking the multidomain glucanotransferase. Conclusion: Both the plant glucanotransferase-polysaccharide couple and the bacterial enzyme provide a glucosyl buffer in the starch degradation pathway. Significance: New light is shed on the regulation and evolution of maltose metabolism. Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a “glucosyl buffer” to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.


Carbohydrate Research | 2009

An array of possibilities for pectin.

Iben Sørensen; Henriette L. Pedersen; William G. T. Willats

Pectins are a major component of plant cell walls and have numerous roles in plant growth and development. Extracted pectins are widely used as functional food ingredients in products including ice creams, jams, jellies and milk drinks. Although all are based on a galacturonan-rich backbone, pectins are an immensely diverse family of polysaccharides, the functional properties of which are dictated by their fine structures. Understanding the biological roles of pectins and optimizing their industrial usage requires a detailed knowledge of their diversity and spatial and temporal distributions, and microarray technology is a promising tool for high throughput pectin analysis. This article discusses the technical aspects of the production of pectin microarrays and explores their current and potential future uses in the context of recent work in the field.


Environmental Microbiology | 2014

Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants.

Yannick Rossez; Ashleigh Holmes; Eliza B. Wolfson; David L. Gally; Arvind Mahajan; Henriette L. Pedersen; William G. T. Willats; Ian K. Toth; Nicola Holden

Bacterial attachment to plant and animal surfaces is generally thought to constitute the initial step in colonization, requiring adherence factors such as flagella and fimbriae. We describe the molecular mechanism underpinning flagella-mediated adherence to plant tissue for the foodborne pathogen, enterohaemorrhagic Escherichia coli. Escherichia coli H7 flagella interacted with a sulphated carbohydrate (carrageenan) on a glycan array, which occurred in a dose-dependent manner. Adherence of E. coli O157 : H-expressing flagella of serotype H7, H6 or H48 to plants associated with outbreaks from fresh produce and to Arabidopsis thaliana, was dependent on flagella interactions with phospholipids and sulpholipids in plasma membranes. Adherence of purified H7 and H48 flagella to carrageenan was reduced at higher concentrations of KH2 PO4 or KCl, showing an ionic basis to the interactions. Purified H7 flagella were observed to physically interact with plasma membranes in spinach plants and in A.thaliana. The results show a specific interaction between E. coli H7, H6 and H48 flagella and ionic lipids in plant plasma membranes. The work extends our understanding of the molecular mechanisms underpinning E.coli flagella targeting of plant hosts and suggests a generic mechanism of recognition common in eukaryotic hosts belonging to different biological kingdoms.


Methods of Molecular Biology | 2012

Carbohydrate Microarrays in Plant Science

Jonatan U. Fangel; Henriette L. Pedersen; Silvia Vidal-Melgosa; Louise I. Ahl; Armando A. Salmeán; Jack Egelund; Maja G. Rydahl; Mads Hartvig Clausen; William G. T. Willats

Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.


Methods of Molecular Biology | 2017

Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP)

Stjepan Krešimir Kračun; Jonatan U. Fangel; Maja G. Rydahl; Henriette L. Pedersen; Silvia Vidal-Melgosa; William G. T. Willats

Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.


Scientific Reports | 2016

High throughput screening of starch structures using carbohydrate microarrays.

Vanja Tanackovic; Maja G. Rydahl; Henriette L. Pedersen; Mohammed Saddik Motawia; Shahnoor S. Shaik; Maria Dalgaard Mikkelsen; Susanne Langgaard Krunic; Jonatan U. Fangel; William G. T. Willats; Andreas Blennow

In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches.

Collaboration


Dive into the Henriette L. Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maja G. Rydahl

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mads Hartvig Clausen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Louise I. Ahl

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge