Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Aronsson is active.

Publication


Featured researches published by Henrik Aronsson.


Plant Molecular Biology | 2007

Improved drought tolerance without undesired side effects in transgenic plants producing trehalose

Sazzad Karim; Henrik Aronsson; Henrik Ericson; Minna Pirhonen; Barbara Leyman; Björn Welin; Einar Mäntylä; E. Tapio Palva; Patrick Van Dijck; Kjell-Ove Holmström

Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too small to provide a protective function. However, overproduction of TPS in plants has also been found combined with pleiotropic growth aberrations. This paper describes three successful strategies to circumvent such growth defects without loosing the improved stress tolerance. First, we introduced into tobacco a double construct carrying the genes TPS1 and TPS2 (encoding TPP) from Saccharomyces cerevisiae. Both genes are regulated by an Arabidopsis RuBisCO promoter from gene AtRbcS1A giving constitutive production of both enzymes. The second strategy involved stress-induced expression by fusing the coding region of ScTPS1 downstream of the drought-inducible ArabidopsisAtRAB18 promoter. In transgenic tobacco plants harbouring genetic constructs with either ScTPS1 alone, or with ScTPS1 and ScTPS2 combined, trehalose biosynthesis was turned on only when the plants experienced stress. The third strategy involved the use of AtRbcS1A promoter together with a transit peptide in front of the coding sequence of ScTPS1, which directed the enzyme to the chloroplasts. This paper confirms that the enhanced drought tolerance depends on unknown ameliorated water retention as the initial water status is the same in control and transgenic plants and demonstrates the influence of expression of heterologous trehalose biosynthesis genes on Arabidopsis root development.


Plant Journal | 2007

Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana

Henrik Aronsson; Patrik Boij; Ramesh Patel; Anthony Wardle; Mats Töpel; Paul Jarvis

Toc64/OEP64 was identified biochemically in pea as a putative component of the chloroplast protein import apparatus. In Arabidopsis, three paralogous genes (atTOC64-III, atTOC64-V and atTOC64-I) encode Toc64-related proteins, and these have been reported to localize in chloroplasts, mitochondria and the cytosol, respectively. To assess the role of the atToc64-III protein in chloroplast protein import in an in vivo context, we identified and characterized Arabidopsis knockout mutants. The absence of detectable defects in toc64-III single mutants raised the possibility of redundancy, and prompted us to also identify toc64-V and toc64-I mutants, cross them to toc64-III, and generate double- and triple-mutant combinations. The toc64 mutants were analysed carefully with respect to a variety of criteria, including chlorophyll accumulation, photosynthetic performance, organellar ultrastructure and chloroplast protein accumulation. In each case, the mutant plants were indistinguishable from wild type. Furthermore, the efficiency of chloroplast protein import was not affected by the toc64 mutations, even when a putative substrate of the atToc64-III protein (wheatgerm-translated precursor of the 33 kDa subunit of the oxygen-evolving complex, OE33) was examined. Moreover, under various stress conditions (high light, osmotic stress and cold), the toc64 triple-mutant plants were not significantly different from wild type. These results demonstrate that Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis, and draw into question the functional significance of this component.


Plant Physiology | 2008

Monogalactosyldiacylglycerol Deficiency in Arabidopsis Affects Pigment Composition in the Prolamellar Body and Impairs Thylakoid Membrane Energization and Photoprotection in Leaves

Henrik Aronsson; Mark Aurel Schöttler; Amélie A. Kelly; Christer Sundqvist; Peter Dörmann; Sazzad Karim; Paul Jarvis

Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of chloroplast membranes and has been proposed to act directly in several important plastidic processes, particularly during photosynthesis. In this study, the effect of MGDG deficiency, as observed in the monogalactosyldiacylglycerol synthase1-1 (mgd1-1) mutant, on chloroplast protein targeting, phototransformation of pigments, and photosynthetic light reactions was analyzed. The targeting of plastid proteins into or across the envelope, or into the thylakoid membrane, was not different from wild-type in the mgd1 mutant, suggesting that the residual amount of MGDG in mgd1 was sufficient to maintain functional targeting mechanisms. In dark-grown plants, the ratio of bound protochlorophyllide (Pchlide, F656) to free Pchlide (F631) was increased in mgd1 compared to the wild type. Increased levels of the photoconvertible pigment-protein complex (F656), which is photoprotective and suppresses photooxidative damage caused by an excess of free Pchlide, may be an adaptive response to the mgd1 mutation. Leaves of mgd1 suffered from a massively impaired capacity for thermal dissipation of excess light due to an inefficient operation of the xanthophyll cycle; the mutant contained less zeaxanthin and more violaxanthin than wild type after 60 min of high-light exposure and suffered from increased photosystem II photoinhibition. This is attributable to an increased conductivity of the thylakoid membrane at high light intensities, so that the proton motive force is reduced and the thylakoid lumen is less acidic than in wild type. Thus, the pH-dependent activation of the violaxanthin de-epoxidase and of the PsbS protein is impaired.


Plant Journal | 2010

The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis

Christel Garcia; Nadir Zaman Khan; Ulf Nannmark; Henrik Aronsson

Thylakoid biogenesis is a crucial step for plant development involving the combined action of many cellular actors. CPSAR1 is shown here to be required for the normal organization of mature thylakoid stacks, and ultimately for embryo development. CPSAR1 is a chloroplast protein that has a dual localization in the stroma and the inner envelope membrane, according to microscopy studies and subfractionation analysis. CPSAR1 is close to the Obg nucleotide binding protein subfamily and displays GTPase activity, as demonstrated by in vitro assays. Disruption of the CPSAR1 gene via T-DNA insertion results in the arrest of embryo development. In addition, transmission electron microscopy analysis indicates that mutant embryos are unable to develop thylakoid membranes, and remain white. Unstacked membrane structures resembling single lamellae accumulate in the stroma, and do not assemble into mature thylakoid stacks. CPSAR1 RNA interference induces partially developed thylakoids leading to pale-green embryos. Altogether, the presented data demonstrate that CPSAR1 is a protein essential for the formation of normal thylakoid membranes, and suggest a possible involvement in the initiation of vesicles from the inner envelope membrane for the transfer of lipids to the thylakoids.


PLOS ONE | 2013

New Putative Chloroplast Vesicle Transport Components and Cargo Proteins Revealed Using a Bioinformatics Approach: An Arabidopsis Model

Nadir Zaman Khan; Emelie Lindquist; Henrik Aronsson

Proteins and lipids are known to be transported to targeted cytosolic compartments in vesicles. A similar system in chloroplasts is suggested to transfer lipids from the inner envelope to the thylakoids. However, little is known about both possible cargo proteins and the proteins required to build a functional vesicle transport system in chloroplasts. A few components have been suggested, but only one (CPSAR1) has a verified location in chloroplast vesicles. This protein is localized in the donor membrane (envelope) and vesicles, but not in the target membrane (thylakoids) suggesting it plays a similar role to a cytosolic homologue, Sar1, in the secretory pathway. Thus, we hypothesized that there may be more similarities, in addition to lipid transport, between the vesicle transport systems in the cytosol and chloroplast, i.e. similar vesicle transport components, possible cargo proteins and receptors. Therefore, using a bioinformatics approach we searched for putative chloroplast components in the model plant Arabidopsis thaliana, corresponding mainly to components of the cytosolic vesicle transport system that may act in coordination with previously proposed COPII chloroplast homologues. We found several additional possible components, supporting the notion of a fully functional vesicle transport system in chloroplasts. Moreover, we found motifs in thylakoid-located proteins similar to those of COPII vesicle cargo proteins, supporting the hypothesis that chloroplast vesicles may transport thylakoid proteins from the envelope to the thylakoid membrane. Several putative cargo proteins are involved in photosynthesis, thus we propose the existence of a novel thylakoid protein pathway that is important for construction and maintenance of the photosynthetic machinery.


Journal of Biological Chemistry | 2014

Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance.

Lars L. E. Sjögren; Noriaki Tanabe; Panagiotis Lymperopoulos; Nadir Zaman Khan; Steven R. Rodermel; Henrik Aronsson; Adrian K. Clarke

Background: ClpC/Hsp93 is a chloroplast molecular chaperone whose function is essential for plant viability. Results: Chloroplast ClpC localized in both the stromal and envelope-membrane fractions associates with the Clp proteolytic core. Conclusion: ClpC functions primarily as the chaperone component of the chloroplast Clp protease. Significance: Learning how ClpC contributes to key functions of the Clp protease is crucial to understanding the importance of this essential enzyme for chloroplast biology. The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, along with the closely related ClpD, it is ClpC1 that is the most abundant throughout leaf maturation. An unexpectedly large proportion of both chloroplast ClpC proteins (30% of total ClpC content) associates to envelope membranes in addition to their stromal localization. The Clp proteolytic core is also bound to envelope membranes, the amount of which is sufficient to bind to all the similarly localized ClpC. The role of such an envelope membrane Clp protease remains unclear although it appears uninvolved in preprotein processing or Tic subunit protein turnover. Within the stroma, the amount of oligomeric ClpC protein is less than that of the Clp proteolytic core, suggesting most if not all stromal ClpC functions as part of the Clp protease; a proposal supported by the near abolition of Clp degradation activity in the clpC1 knock-out mutant. Overall, ClpC appears to function primarily within the Clp protease, as the principle stromal protease responsible for maintaining homeostasis, and also on the envelope membrane where it possibly confers a novel protein quality control mechanism for chloroplast preprotein import.


Plant Journal | 2010

Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency

Henrik Aronsson; Jonathan Combe; Ramesh Patel; Birgit Agne; Meryll Martin; Felix Kessler; Paul Jarvis

The atToc33 protein is one of several pre-protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis-related pre-proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild-type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159-deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.


Molecular Plant | 2009

In vivo Studies on the Roles of Tic55-Related Proteins in Chloroplast Protein Import in Arabidopsis thaliana

Patrik Boij; Ramesh Patel; Christel Garcia; Paul Jarvis; Henrik Aronsson

The Tic55 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-II and AtPTC52 (Protochlorophyllide-dependent Translocon Component, 52 kDa; has also been called atTic55-IV). Our phylogenetic analysis shows that atTic55-II is an ortholog of psTic55 from pea (Pisum sativum), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild-type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-II mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-II and AtPTC52 are not strictly required for functional protein import in Arabidopsis.


The Plant Cell | 2012

Evolution from the Prokaryotic to the Higher Plant Chloroplast Signal Recognition Particle: The Signal Recognition Particle RNA Is Conserved in Plastids of a Wide Range of Photosynthetic Organisms

Chantal Träger; Magnus Alm Rosenblad; Dominik Ziehe; Christel Garcia-Petit; Lukas Schrader; Klaus Kock; Christine V. Richter; Birgit Klinkert; Franz Narberhaus; Christian Herrmann; Eckhard Hofmann; Henrik Aronsson; Danja Schünemann

This article provides an analysis of chloroplast signal recognition particle (cpSRP) evolution within the green and red lineages. A focus lies on the distribution and characterization of the plastid-encoded SRP RNA component. Furthermore, the cpSRP system of Physcomitrella patens containing an SRP RNA and a cpSRP43 component was investigated, and the structure of the cpFtsY receptor was solved. The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of the conserved SRP54 and the SRP receptor, FtsY, are present in higher plant chloroplasts. In this study, we analyzed the phylogenetic distribution of SRP components in photosynthetic organisms to elucidate the evolution of the SRP system. We identified conserved plastid SRP RNAs within all nonspermatophyte land plant lineages and in all chlorophyte branches. Furthermore, we show the simultaneous presence of cpSRP43 in these organisms. The function of this novel SRP system was biochemically and structurally characterized in the moss Physcomitrella patens. We show that P. patens chloroplast SRP (cpSRP) RNA binds cpSRP54 but has lost the ability to significantly stimulate the GTPase cycle of SRP54 and FtsY. Furthermore, the crystal structure at 1.8-Å resolution and the nucleotide specificity of P. patens cpFtsY was determined and compared with bacterial FtsY and higher plant chloroplast FtsY. Our data lead to the view that the P. patens cpSRP system occupies an intermediate position in the evolution from bacterial-type SRP to higher plant-type cpSRP system.


Plant Journal | 2015

The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth

Patrik M. Karlsson; Andrei Herdean; Lisa Adolfsson; Azeez Beebo; Hugues Nziengui; Sonia Irigoyen; Renáta Ünnep; Ottó Zsiros; Gergely Nagy; Győző Garab; Henrik Aronsson; Wayne K. Versaw; Cornelia Spetea

The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms.

Collaboration


Dive into the Henrik Aronsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sazzad Karim

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Katalin Solymosi

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar

Clas Dahlin

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramesh Patel

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge