Henrik Bindslev
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Bindslev.
Nuclear Fusion | 2007
A. J. H. Donné; A.E. Costley; R. Barnsley; Henrik Bindslev; R.L. Boivin; G. D. Conway; R.K. Fisher; R. Giannella; H. Hartfuss; M. von Hellermann; E. Hodgson; L. C. Ingesson; K. Itami; D.W. Johnson; Y. Kawano; T. Kondoh; A. V. Krasilnikov; Y. Kusama; A. Litnovsky; Ph. Lotte; P. Nielsen; T. Nishitani; F. Orsitto; B.J. Peterson; G. Razdobarin; J. Sánchez; M. Sasao; T. Sugie; G. Vayakis; V. S. Voitsenya
In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.
Nuclear Fusion | 2010
M. Salewski; F. Meo; M. Stejner; O. Asunta; Henrik Bindslev; V. Furtula; S. B. Korsholm; Taina Kurki-Suonio; F. Leipold; F. Leuterer; P. K. Michelsen; D. Moseev; S. K. Nielsen; J. Stober; G. Tardini; D. Wagner; P. Woskov
Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injection (NBI) configurations: two NBI sources and only one NBI source. The measured CTS spectra as well as the inferred one-dimensional fast ion velocity distribution functions are clearly asymmetric as a consequence of the anisotropy of the beam ion populations and the selected geometry of the experiment. As expected, the one-beam configuration can clearly be distinguished from the two-beam configuration. The fast ion population is smaller and the asymmetry is less pronounced for the one-beam configuration. Salient features of the numerical simulation results agree with the CTS measurements while quantitative discrepancies in absolute values and gradients are found.
Nuclear Fusion | 2011
M. Salewski; Stefan Kragh Nielsen; Henrik Bindslev; V. Furtula; N.N. Gorelenkov; Søren Bang Korsholm; F. Leipold; F. Meo; Poul Michelsen; D. Moseev; M. Stejner
The collective Thomson scattering (CTS) diagnostic proposed for ITER is designed to measure projected 1D fast-ion velocity distribution functions at several spatial locations simultaneously. The frequency shift of scattered radiation and the scattering geometry place fast ions that caused the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v∥/v| 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution functions from simulated simultaneous measurements with the back- and forward scattering systems.
Plasma Physics and Controlled Fusion | 2009
M. Salewski; O. Asunta; L.-G. Eriksson; Henrik Bindslev; Ville Hynönen; Søren Bang Korsholm; Taina Kurki-Suonio; F. Leipold; F. Meo; Poul Michelsen; Stefan Kragh Nielsen; J Roenby
Auxiliary heating such as neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) will accelerate ions in ITER up to energies in the MeV range, i.e. energies which are also typical for alpha particles. Fast ions of any of these populations will elevate the collective Thomson scattering (CTS) signal for the proposed CTS diagnostic in ITER. It is of interest to determine the contributions of these fast ion populations to the CTS signal for large Doppler shifts of the scattered radiation since conclusions can mostly be drawn for the dominant contributor. In this study, distribution functions of fast ions generated by NBI and ICRH are calculated for a steady-state ITER burning plasma equilibrium with the ASCOT and PION codes, respectively. The parameters for the auxiliary heating systems correspond to the design currently foreseen for ITER. The geometry of the CTS system for ITER is chosen such that near perpendicular and near parallel velocity components are resolved. In the investigated ICRH scenario, waves at 50 MHz resonate with tritium at the second harmonic off-axis on the low field side. Effects of a minority heating scheme with 3He are also considered. CTS scattering functions for fast deuterons, fast tritons, fast 3He and the fusion born alphas are presented, revealing that fusion alphas dominate the measurable signal by an order of magnitude or more in the Doppler shift frequency ranges typical for fast ions. Hence the observable CTS signal can mostly be attributed to the alpha population in these frequency ranges. The exceptions are limited regions in space with some non-negligible signal due to beam ions or fast 3He which give rise to about 30% and 10–20% of the CTS signal, respectively. In turn, the dominance of the alpha contribution implies that the effects of other fast ion contributions will be difficult to observe by CTS.
Plasma Physics and Controlled Fusion | 2010
S. K. Nielsen; Henrik Bindslev; M. Salewski; A. Bürger; E. Delabie; V. Furtula; M. Kantor; Søren Bang Korsholm; F. Leipold; F. Meo; Poul Michelsen; D. Moseev; J.W. Oosterbeek; M. Stejner; E. Westerhof; Paul P. Woskov
Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39? to the magnetic field we find a drop in the fast-ion distribution of 20?40%. For a resolved angle of 83? to the magnetic field the drop is no larger than 20%.
Nuclear Fusion | 2011
Stefan Kragh Nielsen; M. Salewski; Henrik Bindslev; A. Bürger; V. Furtula; M. Kantor; Søren Bang Korsholm; H. R. Koslowski; A. Krämer-Flecken; F. Leipold; F. Meo; Poul Michelsen; D. Moseev; J. W. Oosterbeek; M. Stejner; E. Westerhof
Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations interact strongly with the fast-ion population in a wide range of plasma parameters. Part of the ion phase space density oscillates out of phase with the sawtooth oscillation during hydrogen neutral beam injection (NBI). These oscillations most likely originate from fast hydrogen ions with energies close to the full injection energy. At lower energies passing fast ions in the plasma centre are strongly redistributed at the time of sawtooth collapse but no redistribution of trapped fast ions is observed. The redistribution of fast ions from deuterium NBI in the plasma centre is found to vary throughout velocity space. The reduction is most pronounced for passing ions. We find no evidence of inverted sawteeth outside the sawtooth inversion surface in the fast-ion distribution function.
Nuclear Fusion | 2012
M. Salewski; B. Geiger; S. K. Nielsen; Henrik Bindslev; M. Garcia-Munoz; W.W. Heidbrink; Søren Bang Korsholm; F. Leipold; F. Meo; Poul Michelsen; D. Moseev; M. Stejner; G. Tardini
We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion Dα (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally.
Review of Scientific Instruments | 2008
F. Meo; Henrik Bindslev; Søren Bang Korsholm; Vedran Furtula; F. Leuterer; F. Leipold; Poul Michelsen; Stefan Kragh Nielsen; M. Salewski; J. Stober; D. Wagner; P. Woskov
The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110 GHz) to resolve the one-dimensional velocity distribution of the confined fast ions. The steerable antennas will allow different scattering geometries to fully explore the anisotropic fast ion distributions at different spatial locations. This paper covers the capabilities and operational limits of the diagnostic. It then describes the commissioning activities carried out to date. These activities include gyrotron studies, transmission line alignment, and beam pattern measurements in the vacuum vessel. Overlap experiments in near perpendicular and near parallel have confirmed the successful alignment of the system. First results in near perpendicular of scattered spectra in a neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) plasma (minority hydrogen) on ASDEX Upgrade have shown evidence of ICRH heating phase of hydrogen.
Fusion Science and Technology | 2008
N.C. Luhmann; Henrik Bindslev; H.K. Park; J. Sánchez; G. Taylor; C. X. Yu
Abstract Microwave-based diagnostics have found broad application in magnetic fusion plasma diagnostics and are expected to be widely employed in future burning plasma experiments (BPXs). Most of these techniques are based directly on the dispersive properties of the plasma medium that, as shown in the body of the paper, results in the microwave/millimeter wave portion of the electromagnetic spectrum being particularly well suited for a variety of measurements of both magnetic fusion plasma equilibrium parameters and their fluctuations. Electron cyclotron emission provides a measurement of electron temperature and its fluctuations while electron cyclotron absorption potentially can provide a measurement of electron pressure (the product of electron density and temperature) as well as information on the suprathermal electron distribution. Electron Bernstein wave emission is also employed for electron temperature radiometric measurements in devices including reversed field pinches, spherical tori, and higher-aspect-ratio tokamaks and stellarators that operate at high β. The radar-based microwave reflectometry technique measures the electron density profile and its fluctuations by means of the reflection of electromagnetic waves at the plasma cutoff layer. Coherent Thomson scattering in the microwave region yields information on the fast ion population. Wave number resolved microwave collective scattering is also widely employed for measuring nonthermal (turbulent) density fluctuations or coherent electrostatic waves. The approach taken in this review is to address each technique separately beginning with the physical principles followed by representative implementations on magnetic fusion devices. In each case, the applicability to future BPXs is discussed. It is impossible in a short review to capture fully the numerous significant accomplishments of the many clever scientists and engineers who have advanced microwave plasma diagnostics technology over many decades. Therefore, in this paper, we can reveal only the basic principles together with some of the most exciting highlights while outlining the major trends, and we hope it will serve as an exciting introduction to this rich field of plasma diagnostics.
Nuclear Fusion | 2013
M. Salewski; B. Geiger; S. K. Nielsen; Henrik Bindslev; M. Garcia-Munoz; W. W. Heidbrink; Søren Bang Korsholm; F. Leipold; Jens Madsen; F. Meo; Poul Michelsen; D. Moseev; M. Stejner; G. Tardini
Fast-ion D? (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fast-ion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can use CTS and FIDA measurements together and that takes uncertainties in such measurements into account. Our prescription is general and could be applied to other diagnostics. We demonstrate tomographic reconstructions of an ASDEX Upgrade beam ion velocity distribution function. First, we compute synthetic measurements from two CTS views and two FIDA views using a TRANSP/NUBEAM simulation, and then we compute joint tomographic inversions in velocity-space from these. The overall shape of the 2D velocity distribution function and the location of the maxima at full and half beam injection energy are well reproduced in velocity-space tomographic inversions, if the noise level in the measurements is below 10%. Our results suggest that 2D fast-ion velocity distribution functions can be directly inferred from fast-ion measurements and their uncertainties, even if the measurements are taken with different diagnostic methods.