Henrik Biverstål
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Biverstål.
Nature Structural & Molecular Biology | 2015
S.A. Cohen; Paolo Arosio; Jenny Presto; Firoz Roshan Kurudenkandy; Henrik Biverstål; Lisa Dolfe; Christopher J.R. Dunning; Xiaoting Yang; Birgitta Frohm; Michele Vendruscolo; Jan Johansson; Christopher M. Dobson; André Fisahn; Tuomas P. J. Knowles; Sara Linse
Alzheimers disease is an increasingly prevalent neurodegenerative disorder whose pathogenesis has been associated with aggregation of the amyloid-β peptide (Aβ42). Recent studies have revealed that once Aβ42 fibrils are generated, their surfaces effectively catalyze the formation of neurotoxic oligomers. Here we show that a molecular chaperone, a human Brichos domain, can specifically inhibit this catalytic cycle and limit human Aβ42 toxicity. We demonstrate in vitro that Brichos achieves this inhibition by binding to the surfaces of fibrils, thereby redirecting the aggregation reaction to a pathway that involves minimal formation of toxic oligomeric intermediates. We verify that this mechanism occurs in living mouse brain tissue by cytotoxicity and electrophysiology experiments. These results reveal that molecular chaperones can help maintain protein homeostasis by selectively suppressing critical microscopic steps within the complex reaction pathways responsible for the toxic effects of protein misfolding and aggregation.
Journal of Biological Chemistry | 2012
Hanna Willander; Jenny Presto; Glareh Askarieh; Henrik Biverstål; Birgitta Frohm; Stefan D. Knight; Jan Johansson; Sara Linse
Background: Alzheimer disease (AD) is associated with Aβ protein misfolding and aggregation into fibrils rich in β-sheet structure. Results: BRICHOS domains prevent fibril formation of Aβ far below the stoichiometric ratio. Conclusion: Aβ is maintained as an unstructured monomer in the presence of BRICHOS. Significance: BRICHOS domain can have a natural protective role against Aβ aggregation, which may open new routes toward AD therapy. Amyloid diseases such as Alzheimer, Parkinson, and prion diseases are associated with a specific form of protein misfolding and aggregation into oligomers and fibrils rich in β-sheet structure. The BRICHOS domain consisting of ∼100 residues is found in membrane proteins associated with degenerative and proliferative disease, including lung fibrosis (surfactant protein C precursor; pro-SP-C) and familial dementia (Bri2). We find that recombinant BRICHOS domains from Bri2 and pro-SP-C prevent fibril formation of amyloid β-peptides (Aβ40 and Aβ42) far below the stoichiometric ratio. Kinetic experiments show that a main effect of BRICHOS is to prolong the lag time in a concentration-dependent, quantitative, and reproducible manner. An ongoing aggregation process is retarded if BRICHOS is added at any time during the lag phase, but it is too late to interfere at the end of the process. Results from circular dichroism and NMR spectroscopy, as well as analytical size exclusion chromatography, imply that Aβ is maintained as an unstructured monomer during the extended lag phase in the presence of BRICHOS. Electron microscopy shows that although the process is delayed, typical amyloid fibrils are eventually formed also when BRICHOS is present. Structural BRICHOS models display a conserved array of tyrosine rings on a five-stranded β-sheet, with inter-hydroxyl distances suited for hydrogen-bonding peptides in an extended β-conformation. Our data imply that the inhibitory mechanism is reliant on BRICHOS interfering with molecular events during the lag phase.
The Journal of Neuroscience | 2014
Firoz Roshan Kurudenkandy; Misha Zilberter; Henrik Biverstål; Jenny Presto; Dmytro Honcharenko; Roger Strömberg; Jan Johansson; Bengt Winblad; André Fisahn
The amyloid-β hypothesis of Alzheimers Disease (AD) focuses on accumulation of amyloid-β peptide (Aβ) as the main culprit for the myriad physiological changes seen during development and progression of AD including desynchronization of neuronal action potentials, consequent development of aberrant brain rhythms relevant for cognition, and final emergence of cognitive deficits. The aim of this study was to elucidate the cellular and synaptic mechanisms underlying the Aβ-induced degradation of gamma oscillations in AD, to identify aggregation state(s) of Aβ that mediate the peptides neurotoxicity, and to test ways to prevent the neurotoxic Aβ effect. We show that Aβ1-42 in physiological concentrations acutely degrades mouse hippocampal gamma oscillations in a concentration- and time-dependent manner. The underlying cause is an Aβ-induced desynchronization of action potential generation in pyramidal cells and a shift of the excitatory/inhibitory equilibrium in the hippocampal network. Using purified preparations containing different aggregation states of Aβ, as well as a designed ligand and a BRICHOS chaperone domain, we provide evidence that the severity of Aβ neurotoxicity increases with increasing concentration of fibrillar over monomeric Aβ forms, and that Aβ-induced degradation of gamma oscillations and excitatory/inhibitory equilibrium is prevented by compounds that interfere with Aβ aggregation. Our study provides correlative evidence for a link between Aβ-induced effects on synaptic currents and AD-relevant neuronal network oscillations, identifies the responsible aggregation state of Aβ and proofs that strategies preventing peptide aggregation are able to prevent the deleterious action of Aβ on the excitatory/inhibitory equilibrium and on the gamma rhythm.
Biochimie | 2017
Rihards Aleksis; Filips Oleskovs; Kristaps Jaudzems; Jens Pahnke; Henrik Biverstål
Alzheimers disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Biochemical Journal | 2016
Helen Poska; Martin Haslbeck; Firoz Roshan Kurudenkandy; Erik Hermansson; Gefei Chen; George Kostallas; Axel Abelein; Henrik Biverstål; Sophie Crux; André Fisahn; Jenny Presto; Jan Johansson
Formation of fibrils of the amyloid-β peptide (Aβ) is suggested to play a central role in neurodegeneration in Alzheimers disease (AD), for which no effective treatment exists. The BRICHOS domain is a part of several disease-related proproteins, the most studied ones being Bri2 associated with familial dementia and prosurfactant protein C (proSP-C) associated with lung amyloid. BRICHOS from proSP-C has been found to be an efficient inhibitor of Aβ aggregation and toxicity, but its lung-specific expression makes it unsuited to target in AD. Bri2 is expressed in the brain, affects processing of Aβ precursor protein, and increased levels of Bri2 are found in AD brain, but the specific role of its BRICHOS domain has not been studied in vivo Here, we find that transgenic expression of the Bri2 BRICHOS domain in the Drosophila central nervous system (CNS) or eyes efficiently inhibits Aβ42 toxicity. In the presence of Bri2 BRICHOS, Aβ42 is diffusely distributed throughout the mushroom bodies, a brain region involved in learning and memory, whereas Aβ42 expressed alone or together with proSP-C BRICHOS forms punctuate deposits outside the mushroom bodies. Recombinant Bri2 BRICHOS domain efficiently prevents Aβ42-induced reduction in γ-oscillations in hippocampal slices. Finally, Bri2 BRICHOS inhibits several steps in the Aβ42 fibrillation pathway and prevents aggregation of heat-denatured proteins, indicating that it is a more versatile chaperone than proSP-C BRICHOS. These findings suggest that Bri2 BRICHOS can be a physiologically relevant chaperone for Aβ in the CNS and needs to be further investigated for its potential in AD treatment.
Nature Communications | 2017
Nina Kronqvist; Médoune Sarr; Anton Lindqvist; Kerstin Nordling; Martins Otikovs; Luca Venturi; Barbara Pioselli; Pasi Purhonen; Michael Landreh; Henrik Biverstål; Zigmantas Toleikis; Lisa Sjöberg; Carol V. Robinson; Nicola Pelizzi; Hans Jörnvall; Hans Hebert; Kristaps Jaudzems; Tore Curstedt; Anna Rising; Jan Johansson
Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
Biochimica et Biophysica Acta | 2015
Henrik Biverstål; Lisa Dolfe; Erik Hermansson; Axel Leppert; Mara Reifenrath; Bengt Winblad; Jenny Presto; Jan Johansson
The BRICHOS domain is associated with human amyloid disease, and it efficiently prevents amyloid fibril formation of the amyloid β-peptide (Aβ) in vitro and in vivo. Recombinant human prosurfactant protein C (proSP-C) BRICHOS domain forms a homotrimer as observed by x-ray crystallography, analytical ultracentrifugation, native polyacrylamide gel electrophoresis, analytical size exclusion chromatography and electrospray mass spectrometry. It was hypothesized that the trimer is an inactive storage form, as a putative substrate-binding site identified in the monomer, is buried in the subunit interface of the trimer. We show here increased dissociation of the BRICHOS trimer into monomers, by addition of detergents or of bis-ANS, known to bind to the putative substrate-binding site, or by introducing a Ser to Arg mutation expected to interfere with trimer formation. This leads to increased capacity to delay Aβ(42) fibril formation. Cross-linking of the BRICHOS trimer with glutaraldehyde, in contrast, renders it unable to affect Aβ(42) fibril formation. Moreover, proSP-C BRICHOS expressed in HEK293 cells is mainly monomeric, as detected by proximity ligation assay. Finally, proteolytic cleavage of BRICHOS in a loop region that is cleaved during proSP-C biosynthesis results in increased capacity to delay Aβ(42) fibril formation. These results indicate that modulation of the accessibility of the substrate-binding site is a means to regulate BRICHOS activity.
Nature Communications | 2017
Gefei Chen; Axel Abelein; Harriet Nilsson; Axel Leppert; Yuniesky Andrade-Talavera; Simone Tambaro; Lovisa Hemmingsson; Firoz Roshan; Michael Landreh; Henrik Biverstål; Philip J.B. Koeck; Jenny Presto; Hans Hebert; André Fisahn; Jan Johansson
Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer’s disease the amyloid-β peptide (Aβ) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aβ fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of Aβ, while dimers strongly suppress Aβ fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.The BRICHOS domain is a chaperone that can act against amyloid-β peptide fibril formation and non-fibrillar protein aggregation. Here the authors use a multidisciplinary approach and show that the Bri2 BRICHOS domain has qualitatively different chaperone activities depending on its quaternary structure.
Acta neuropathologica communications | 2017
Johannes Steffen; Markus Krohn; Christina Schwitlick; Thomas Brüning; Kristin Paarmann; Claus U. Pietrzik; Henrik Biverstål; Baiba Jansone; Oliver Langer; Jens Pahnke
Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer’s disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
Organic and Biomolecular Chemistry | 2014
Dmytro Honcharenko; Partha Pratim Bose; Jyotirmoy Maity; Firoz Roshan Kurudenkandy; Alok Juneja; Erik Flöistrup; Henrik Biverstål; Jan Johansson; Lennart Nilsson; André Fisahn; Roger Strömberg