Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Daub is active.

Publication


Featured researches published by Henrik Daub.


Nature | 1999

EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF.

Norbert Prenzel; Esther Zwick; Henrik Daub; Michael Leserer; Reimar Abraham; Christian Wallasch; Axel Ullrich

Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the mitogenic activity of ligands such as lysophosphatidic acid, endothelin, thrombin, bombesin and carbachol, provides evidence for such an interconnected communication network. Here we show that EGFR transactivation upon GPCR stimulation involves proHB-EGF and a metalloproteinase activity that is rapidly induced upon GPCR–ligand interaction. We show that inhibition of proHB-EGF processing blocks GPCR-induced EGFR transactivation and downstream signals. The pathophysiological significance of this mechanism is demonstrated by inhibition of constitutive EGFR activity upon treatment of PC3 prostate carcinoma cells with the metalloproteinase inhibitor batimastat. Together, our results establish a new mechanistic concept for cross-communication among different signalling systems.


The EMBO Journal | 1997

Signal characteristics of G protein-transactivated EGF receptor

Henrik Daub; Christian Wallasch; Andreas Lankenau; Andreas Herrlich; Axel Ullrich

The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen‐activated protein kinase (MAPK) in response to G protein‐coupled receptor (GPCR) agonists in Rat‐1 fibroblasts. This cross‐talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS‐7 cells. Transient expression of either Gq‐ or Gi‐coupled receptors in COS‐7 cells allowed GPCR agonist‐induced EGFR transactivation, and lysophosphatidic acid (LPA)‐generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq‐ and Gi‐coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3‐kinase did not affect GPCR‐induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA‐ and EGF‐induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq‐ and Gi‐coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.


Molecular Cell | 2008

Kinase-Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the Cell Cycle

Henrik Daub; J. Olsen; Michaela Bairlein; Florian Gnad; Felix S. Oppermann; Roman Körner; Zoltán Greff; György Kéri; Olaf Stemmann; Matthias Mann

Protein kinases are pivotal regulators of cell signaling that modulate each others functions and activities through site-specific phosphorylation events. These key regulatory modifications have not been studied comprehensively, because low cellular abundance of kinases has resulted in their underrepresentation in previous phosphoproteome studies. Here, we combine kinase-selective affinity purification with quantitative mass spectrometry to analyze the cell-cycle regulation of protein kinases. This proteomics approach enabled us to quantify 219 protein kinases from S and M phase-arrested human cancer cells. We identified more than 1000 phosphorylation sites on protein kinases. Intriguingly, half of all kinase phosphopeptides were upregulated in mitosis. Our data reveal numerous unknown M phase-induced phosphorylation sites on kinases with established mitotic functions. We also find potential phosphorylation networks involving many protein kinases not previously implicated in mitotic progression. These results provide a vastly extended knowledge base for functional studies on kinases and their regulation through site-specific phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

An efficient proteomics method to identify the cellular targets of protein kinase inhibitors

Klaus Godl; Josef Wissing; Alexander Kurtenbach; Peter Habenberger; Stephanie Blencke; Heidrun Gutbrod; Kostadinos Salassidis; Matthias Stein-Gerlach; Andrea Missio; Matt Cotten; Henrik Daub

Small molecule inhibitors of protein kinases are widely used in signal transduction research and are emerging as a major class of drugs. Although interpretation of biological results obtained with these reagents critically depends on their selectivity, efficient methods for proteome-wide assessment of kinase inhibitor selectivity have not yet been reported. Here, we address this important issue and describe a method for identifying targets of the widely used p38 kinase inhibitor SB 203580. Immobilization of a suitable SB 203580 analogue and thoroughly optimized biochemical conditions for affinity chromatography permitted the dramatic enrichment and identification of several previously unknown protein kinase targets of SB 203580. In vitro kinase assays showed that cyclin G-associated kinase (GAK) and CK1 were almost as potently inhibited as p38α whereas RICK [Rip-like interacting caspase-like apoptosis-regulatory protein (CLARP) kinase/Rip2/CARDIAK] was even more sensitive to inhibition by SB 203580. The cellular kinase activity of RICK, a known signal transducer of inflammatory responses, was already inhibited by submicromolar concentrations of SB 203580 in intact cells. Therefore, our results warrant a reevaluation of the vast amount of data obtained with SB 203580 and might have significant implications on the development of p38 inhibitors as antiinflammatory drugs. Based on the procedures described here, efficient affinity purification techniques can be developed for other protein kinase inhibitors, providing crucial information about their cellular modes of action.


Nature Reviews Drug Discovery | 2004

Strategies to overcome resistance to targeted protein kinase inhibitors.

Henrik Daub; Katja Specht; Axel Ullrich

Selective inhibition of protein tyrosine kinases is gaining importance as an effective therapeutic approach for the treatment of a wide range of human cancers. However, as extensively documented for the BCR–ABL oncogene in imatinib-treated leukaemia patients, clinical resistance caused by mutations in the targeted oncogene has been observed. Here, we look at how structural and mechanistic insights from imatinib-insensitive Bcr–Abl have been exploited to identify second-generation drugs that override acquired target resistance. These insights have created a rationale for the development of either multi-targeted protein kinase inhibitors or cocktails of selective antagonists as antitumour drugs that combine increased therapeutic potency with a reduced risk of the emergence of molecular resistance.


Molecular & Cellular Proteomics | 2009

Large-scale Proteomics Analysis of the Human Kinome

Felix S. Oppermann; Florian Gnad; J. Olsen; Renate Hornberger; Zoltán Greff; György Kéri; Matthias Mann; Henrik Daub

Members of the human protein kinase superfamily are the major regulatory enzymes involved in the activity control of eukaryotic signal transduction pathways. As protein kinases reside at the nodes of phosphorylation-based signal transmission, comprehensive analysis of their cellular expression and site-specific phosphorylation can provide important insights into the architecture and functionality of signaling networks. However, in global proteome studies, low cellular abundance of protein kinases often results in rather minor peptide species that are occluded by a vast excess of peptides from other cellular proteins. These analytical limitations create a rationale for kinome-wide enrichment of protein kinases prior to mass spectrometry analysis. Here, we employed stable isotope labeling by amino acids in cell culture (SILAC) to compare the binding characteristics of three kinase-selective affinity resins by quantitative mass spectrometry. The evaluated pre-fractionation tools possessed pyrido[2,3-d]pyrimidine-based kinase inhibitors as immobilized capture ligands and retained considerable subsets of the human kinome. Based on these results, an affinity resin displaying the broadly selective kinase ligand VI16832 was employed to quantify the relative expression of more than 170 protein kinases across three different, SILAC-encoded cancer cell lines. These experiments demonstrated the feasibility of comparative kinome profiling in a compact experimental format. Interestingly, we found high levels of cytoplasmic and low levels of receptor tyrosine kinases in MV4–11 leukemia cells compared with the adherent cancer lines HCT116 and MDA-MB-435S. The VI16832 resin was further exploited to pre-fractionate kinases for targeted phosphoproteomics analysis, which revealed about 1200 distinct phosphorylation sites on more than 200 protein kinases. This hitherto largest survey of site-specific phosphorylation across the kinome significantly expands the basis for functional follow-up studies on protein kinase regulation. In conclusion, the straightforward experimental procedures described here enable different implementations of kinase-selective proteomics with considerable potential for future signal transduction and kinase drug target analysis.


Journal of Biological Chemistry | 1997

Critical Role of Calcium- dependent Epidermal Growth Factor Receptor Transactivation in PC12 Cell Membrane Depolarization and Bradykinin Signaling

Esther Zwick; Henrik Daub; Naohito Aoki; Yumiko Yamaguchi-Aoki; Inge Tinhofer; Karl Maly; Axel Ullrich

PC12 cells respond to a variety of external stimuli such as growth factors, neurotransmitters, and membrane depolarization by activating the Ras/mitogen-activated protein kinase pathway. Here we demonstrate that both depolarization-induced calcium influx and treatment with bradykinin stimulate tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). Using a tetracycline-controlled expression system in conjunction with a dominant-negative EGFR mutant, we demonstrate that depolarization and bradykinin triggered signals involve EGFR function upstream of SHC and MAP kinase. Furthermore, bradykinin-stimulated EGFR transactivation is critically dependent on the presence of extracellular calcium, and when triggered by ionophore treatment, calcium influx is already sufficient to induce EGFR tyrosine phosphorylation. Taken together, our results establish calcium-dependent EGFR transactivation as a signaling mechanism mediating activation of the Ras/mitogen-activated protein kinase pathway in neuronal cell types.


Cancer Research | 2008

AXL Is a Potential Target for Therapeutic Intervention in Breast Cancer Progression

Yi Xiang Zhang; Peter Knyazev; Yuri Cheburkin; Kirti Sharma; Yuri P. Knyazev; Laszlo Orfi; István Szabadkai; Henrik Daub; György Kéri; Axel Ullrich

Protein kinases play important roles in tumor development and progression. A variety of members of this family of signal transduction enzymes serve as targets for therapeutic intervention in cancer. We have identified the receptor tyrosine kinase (RTK) AXL as a potential mediator of motility and invasivity of breast cancer cells. AXL is expressed in most highly invasive breast cancer cells, but not in breast cancer cells of low invasivity. Ectopic expression of AXL was sufficient to confer a highly invasive phenotype to weakly invasive MCF7 breast cancer cells. Experimental inhibition of AXL signaling by a dominant-negative AXL mutant, an antibody against the extracellular domain of AXL, or short hairpin RNA knockdown of AXL decreased motility and invasivity of highly invasive breast cancer cells. To selectively interfere with cancer cell properties defining the rate of disease progression, we identified 3-quinolinecarbonitrile compounds, which displayed potent inhibitory activity against AXL and showed strong interference with motility and invasivity of breast cancer cells. Our findings validated the RTK AXL as a critical element in the signaling network that governs motility and invasivity of breast cancer cells, and allowed the identification of experimental anti-AXL small molecular inhibitors that represent lead substances for the development of antimetastatic breast cancer therapy.


Molecular & Cellular Proteomics | 2009

Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics

Cuiping Pan; J. Olsen; Henrik Daub; Matthias Mann

Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development.


Current Opinion in Genetics & Development | 1997

Novel mechanisms of RTK signal generation

F. U. Weiss; Henrik Daub; Axel Ullrich

Recent findings shed new light on the process of receptor tyrosine kinase (RTK) activation and signal definition. In extension to the established mechanism of ligand-induced homodimeric receptor complex formation, recent findings highlight heterodimeric receptor aggregation as a powerful means of signal diversification. Promiscuous receptor interactions involve different ligand binding kinetics and generate divergent receptor phosphorylation sites that could allow enhanced or modified signal generation. Besides activation by a specific ligand, a newly defined RTK function involves signal integration of a variety of stimuli, including calcium-dependent responses in neuronal cells, activation of G-protein-coupled receptors or cellular stress such as UV irradiation. On the basis of existing evidence for such crossactivation pathways, RTKs must be considered as representing critical foci and switch points for multiple environmental and internal stimuli.

Collaboration


Dive into the Henrik Daub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltán Greff

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Wissing

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Klebl

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge