Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Edgren is active.

Publication


Featured researches published by Henrik Edgren.


The New England Journal of Medicine | 2012

Somatic STAT3 mutations in large granular lymphocytic leukemia.

Hanna L M Koskela; Samuli Eldfors; Pekka Ellonen; Arjan J. van Adrichem; Heikki Kuusanmäki; Emma I. Andersson; Sonja Lagström; Michael J. Clemente; Thomas L. Olson; Sari E. Jalkanen; Muntasir Mamun Majumder; Henrikki Almusa; Henrik Edgren; Maija Lepistö; Pirkko Mattila; Kathryn M Guinta; Pirjo Koistinen; Taru Kuittinen; Kati Penttinen; Alun Parsons; Jonathan Knowles; Janna Saarela; Krister Wennerberg; Olli Kallioniemi; Kimmo Porkka; Thomas P. Loughran; Caroline Heckman; Jaroslaw P. Maciejewski; Satu Mustjoki

BACKGROUND T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).


Genome Biology | 2008

Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues

Sami Kilpinen; Reija Autio; Kalle Ojala; Kristiina Iljin; Elmar Bucher; Henri Sara; Tommi Pisto; Matti Saarela; Rolf Skotheim; Mari Björkman; John Patrick Mpindi; Saija Haapa-Paananen; Paula Vainio; Henrik Edgren; Maija Wolf; Jaakko Astola; Sampsa Hautaniemi; Olli Kallioniemi

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly context-specific. Here, we have developed a method for the comparison of mRNA expression levels of most human genes across 9,783 Affymetrix gene expression array experiments representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database of gene expression patterns in normal human tissues and pathological conditions covers 113 million datapoints and is available from the GeneSapiens website.


Cancer Research | 2006

TMPRSS2 Fusions with Oncogenic ETS Factors in Prostate Cancer Involve Unbalanced Genomic Rearrangements and Are Associated with HDAC1 and Epigenetic Reprogramming

Kristiina Iljin; Maija Wolf; Henrik Edgren; Santosh Gupta; Sami Kilpinen; Rolf I. Skotheim; Mari T. Peltola; Frank Smit; Gerald W. Verhaegh; Jack A. Schalken; Olli Kallioniemi

Translocations fusing the strong androgen-responsive gene, TMPRSS2, with ERG or other oncogenic ETS factors may facilitate prostate cancer development. Here, we studied 18 advanced prostate cancers for ETS factor alterations, using reverse transcription-PCR and DNA and RNA array technologies, and identified putative ERG downstream gene targets from the microarray data of 410 prostate samples. Out of the 27 ETS factors, ERG was most frequently overexpressed. Seven cases showed TMPRSS2:ERG gene fusions, whereas the TMPRSS2:ETV4 fusion was seen in one case. In five out of six tumors with high ERG expression, array-CGH analysis revealed interstitial 2.8 Mb deletions between the TMPRSS2 and ERG loci, or smaller, unbalanced rearrangements. In silico analysis of the ERG gene coexpression patterns revealed an association with high expression of the histone deacetylase 1 gene, and low expression of its target genes. Furthermore, we observed increased expression of WNT-associated pathways and down-regulation of tumor necrosis factor and cell death pathways. In summary, our data indicate that the TMPRSS2:ERG translocation is common in advanced prostate cancer and occurs by virtue of unbalanced genomic rearrangements. Activation of ERG by fusion with TMPRSS2 may lead to epigenetic reprogramming, WNT signaling, and down-regulation of cell death pathways, implicating ERG in several hallmarks of cancer with potential therapeutic importance.


Clinical Cancer Research | 2009

CIP2A Is Associated with Human Breast Cancer Aggressivity

Christophe Côme; Anni Laine; Maïa Chanrion; Henrik Edgren; Elina Mattila; Xiaoling Liu; Jos Jonkers; Johanna Ivaska; Jorma Isola; Jean-Marie Darbon; Olli Kallioniemi; Simon Thézenas; Jukka Westermarck

Purpose: To investigate the clinical relevance of the recently characterized human oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) in human breast cancer. Experimental Design: CIP2A expression (mRNA and protein) was measured in three different sets of human mammary tumors and compared with clinicopathologic variables. The functional role of CIP2A in breast cancer cells was evaluated by small interfering RNA–mediated depletion of the protein followed by an analysis of cell proliferation, migration, anchorage-independent growth, and xenograft growth. Results: CIP2A mRNA is overexpressed (n = 159) and correlates with higher Scarff-Bloom-Richardson grades (n = 251) in samples from two independent human breast cancer patients. CIP2A protein was found to be overexpressed in 39% of 33 human breast cancer samples. Furthermore, CIP2A mRNA expression positively correlated with lymph node positivity of the patients and with the expression of proliferation markers and p53 mutations in the tumor samples. Moreover, CIP2A protein expression was induced in breast cancer mouse models presenting mammary gland–specific depletion of p53 and either BRCA1 or BRCA2. Functionally, CIP2A depletion was shown to inhibit the expression of its target protein c-Myc. Loss of CIP2A also inhibited anchorage-independent growth in breast cancer cells. Finally, CIP2A was shown to support MDA-MB-231 xenograft growth in nude mice. Conclusions: Our data show that CIP2A is associated with clinical aggressivity in human breast cancer and promotes the malignant growth of breast cancer cells. Thus, these results validate the role of CIP2A as a clinically relevant human oncoprotein and warrant further investigation of CIP2A as a therapeutic target in breast cancer treatment. (Clin Cancer Res 2009;15(16):5092–100)


Developmental Cell | 2008

Integrin trafficking regulated by Rab21 is necessary for cytokinesis

Teijo Pellinen; Saara Tuomi; Antti Arjonen; Maija Wolf; Henrik Edgren; Hannelore Meyer; Robert Grosse; Thomas M. Kitzing; Juha Rantala; Olli Kallioniemi; Reinhard Fässler; Marko J. Kallio; Johanna Ivaska

Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.


Genes, Chromosomes and Cancer | 2010

Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors

David J. McBride; Arto Orpana; Christos Sotiriou; Heikki Joensuu; Philip Stephens; Laura Mudie; Eija Hämäläinen; Lucy Stebbings; Leif C. Andersson; Adrienne M. Flanagan; Virginie Durbecq; Michail Ignatiadis; Olli Kallioniemi; Caroline Heckman; Kari Alitalo; Henrik Edgren; P. Andrew Futreal; Michael R. Stratton; Peter J. Campbell

Detection of recurrent somatic rearrangements routinely allows monitoring of residual disease burden in leukemias, but is not used for most solid tumors. However, next‐generation sequencing now allows rapid identification of patient‐specific rearrangements in solid tumors. We mapped genomic rearrangements in three cancers and showed that PCR assays for rearrangements could detect a single copy of the tumor genome in plasma without false positives. Disease status, drug responsiveness, and incipient relapse could be serially assessed. In future, this strategy could be readily established in diagnostic laboratories, with major impact on monitoring of disease status and personalizing treatment of solid tumors.


Cancer Genetics and Cytogenetics | 2004

Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer

Eeva Kettunen; Sisko Anttila; Jouni K. Seppänen; Antti Karjalainen; Henrik Edgren; Irmeli Lindström; Reijo Salovaara; Anna-Maria Nissén; Jarmo A. Salo; Karin Mattson; Jaakko Hollmén; Sakari Knuutila; Harriet Wikman

The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.


BMC Bioinformatics | 2004

Optimized LOWESS normalization parameter selection for DNA microarray data

John A. Berger; Sampsa Hautaniemi; Anna-Kaarina Järvinen; Henrik Edgren; Sanjit K. Mitra; Jaakko Astola

BackgroundMicroarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail.Results and discussionIn this work, we discuss how to choose parameters for the LOWESS method. Moreover, we present an optimization approach for obtaining the fraction of data points utilized in the local regression and analyze results for local print-tip normalization. The optimization procedure determines the bandwidth parameter for the local regression by minimizing a cost function that represents the mean-squared difference between the LOWESS estimates and the normalization reference level. We demonstrate the utility of the systematic parameter selection using two publicly available data sets. The first data set consists of three self versus self hybridizations, which allow for a quantitative study of the optimization method. The second data set contains a collection of DNA microarray data from a breast cancer study utilizing four breast cancer cell lines. Our results show that different parameter choices for the bandwidth window yield dramatically different calibration results in both studies.ConclusionsResults derived from the self versus self experiment indicate that the proposed optimization approach is a plausible solution for estimating the LOWESS parameters, while results from the breast cancer experiment show that the optimization procedure is readily applicable to real-life microarray data normalization. In summary, the systematic approach to obtain critical parameters in the LOWESS technique is likely to produce data that optimally meets assumptions made in the data preprocessing step and thereby makes studies utilizing the LOWESS method unambiguous and easier to repeat.


Breast Cancer Research and Treatment | 2011

Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.

Sirkku Pollari; Sanna Maria Käkönen; Henrik Edgren; Maija Wolf; Pekka Kohonen; Henri Sara; Theresa A. Guise; Olli Kallioniemi

Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the l-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for l-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that l-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of l-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.


British Journal of Haematology | 2003

Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma.

Bálint Nagy; Tuija Lundán; Marcelo L. Larramendy; Yan Aalto; Ying Zhu; Tarja Niini; Henrik Edgren; Anna Ferrer; Juhani Vilpo; Erkki Elonen; Kim Vettenranta; Kaarle Franssila; Sakari Knuutila

Summary. The expression of apoptosis‐related genes BCL2, BAX, BCL2L1, BCL2A1, MCL1, DAPK1 and MYC was studied by quantitative real‐time polymerase chain reaction on total RNA samples from patients with acute lymphoblastic leukaemia (ALL, n = 16), acute myeloid leukaemia (AML, n = 27), chronic myeloid leukaemia (CML, n = 12), mantle cell lymphoma (MCL, n = 19) and chronic lymphoid leukaemia (CLL, n = 32). BCL2, BAX, BCL2A1, MCL1, DAPK1 and MYC were overexpressed in all patient groups. BCL2L1 was underexpressed in CLL and CML, but not in AML, ALL and MCL. MCL1 levels were significantly higher in CD13 and CD33‐positive ALL, and in CD56‐positive AML samples. BCL2, BCL2L1, BCL2A1 and MCL1 were overexpressed and DAPK1 was underexpressed in CLL samples with a 11q23 deletion. MYC overexpression was significantly associated with shorter overall survival in MCL (P < 0·01). AML patients with a normal karyotype showed a higher frequency of BCL2A1 overexpression (P < 0·001) than those with an abnormal karyotype.

Collaboration


Dive into the Henrik Edgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maija Wolf

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Kontro

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge