Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Gårdsvoll is active.

Publication


Featured researches published by Henrik Gårdsvoll.


The EMBO Journal | 2005

Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide

Paola Llinas; Marie Hélène Le Du; Henrik Gårdsvoll; Keld Danø; Michael Ploug; Bernard Gilquin; Enrico A. Stura; André Ménez

We report the crystal structure of a soluble form of human urokinase‐type plasminogen activator receptor (uPAR/CD87), which is expressed at the invasive areas of the tumor‐stromal microenvironment in many human cancers. The structure was solved at 2.7 Å in association with a competitive peptide inhibitor of the urokinase‐type plasminogen activator (uPA)–uPAR interaction. uPAR is composed of three consecutive three‐finger domains organized in an almost circular manner, which generates both a deep internal cavity where the peptide binds in a helical conformation, and a large external surface. This knowledge combined with the discovery of a convergent binding motif shared by the antagonist peptide and uPA allowed us to build a model of the human uPA–uPAR complex. This model reveals that the receptor‐binding module of uPA engages the uPAR central cavity, thus leaving the external receptor surface accessible for other protein interactions (vitronectin and integrins). By this unique structural assembly, uPAR can orchestrate the fine interplay with the partners that are required to guide uPA‐focalized proteolysis on the cell surface and control cell adhesion and migration.


Journal of Biological Chemistry | 2006

A Region in Urokinase Plasminogen Receptor Domain III Controlling a Functional Association with α5β1 Integrin and Tumor Growth

Pratima Chaurasia; Julio A. Aguirre-Ghiso; Olin D. Liang; Henrik Gårdsvoll; Liliana Ossowski

Highly expressed urokinase plasminogen activator receptor (uPAR) can interact with α5β1 integrin leading to persistent ERK activation and tumorigenicity. Disrupting this interaction reduces ERK activity, forcing cancer cells into dormancy. We identified a site in uPAR domain III that is indispensable for these effects. A 9-mer peptide derived from a sequence in domain III (residues 240-248) binds purified α5β1 integrin. Substituting a single amino acid (S245A) in this peptide, or in full-length soluble uPAR, impairs binding of the purified integrin. In the recently solved crystal structure of uPAR the Ser-245 is confined to the large external surface of the receptor, a location that is well separated from the central urokinase plasminogen binding cavity. The impact of this site on α5β1 integrin-dependent cell functions was examined by comparing cells induced to express uPARwt or the uPARS245A mutant. Transfecting uPARwt into cells with low endogenous levels of uPAR, inactive integrin, low ERK activity, and a dormant phenotype in vivo restores these functions and reinstates growth in vivo. In contrast, transfection of the same cells with uPARS245A elicits only very small changes. Incubation of highly malignant cells with the wild-type, but not the S245A mutant peptide, disrupts the uPAR integrin interaction leading to down-regulation of ERK activity. The relevance of this binding site, and of the lateral uPAR-α5β1 integrin interaction, to ERK pathway activation and tumor growth implicates it as a possible specific target for cancer therapy.


Journal of Biological Chemistry | 2007

Extracellular Collagenases and the Endocytic Receptor, Urokinase Plasminogen Activator Receptor-associated Protein/Endo180, Cooperate in Fibroblast-mediated Collagen Degradation

Daniel H. Madsen; Lars H. Engelholm; Signe Ingvarsen; Thore Hillig; Rebecca A. Wagenaar-Miller; Lars Kjøller; Henrik Gårdsvoll; Gunilla Høyer-Hansen; Kenn Holmbeck; Thomas H. Bugge; Niels Behrendt

The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin-like structure by the collagen, occurring upon collagenase-mediated cleavage under native conditions. Third, we demonstrate that the growth of uPARAP/Endo180-deficient fibroblasts on a native collagen matrix leads to substantial extracellular accumulation of well defined collagen fragments, whereas, wild-type fibroblasts possess the ability to direct an organized and complete degradation sequence comprising both the initial cleavage, the endocytic uptake, and the intracellular breakdown of collagen.


Journal of Biological Chemistry | 2007

Mapping of the vitronectin-binding site on the urokinase receptor: involvement of a coherent receptor interface consisting of residues from both domain I and the flanking interdomain linker region.

Henrik Gårdsvoll

The urokinase-type plasminogen activator receptor (uPAR) has been implicated as a modulator of several biochemical processes that are active during tumor invasion and metastasis, e.g. extracellular proteolysis, cell adhesion, and cell motility. The structural basis for the high affinity interaction between the urokinase-type plasminogen activator (uPA) and uPAR, which focuses cell surface-associated plasminogen activation in vivo, is now thoroughly characterized by site-directed mutagenesis studies and x-ray crystallography. In contrast, the structural basis for the interaction between uPAR and the extracellular matrix protein vitronectin, which is involved in the regulation of cell adhesion and motility, remains to be clarified. In this study, we have identified the functional epitope on uPAR that is responsible for its interaction with the full-length, extended form of vitronectin by using a comprehensive alanine-scanning library of purified single-site uPAR mutants (244 positions tested). Interestingly, the five residues identified as “hot spots” for vitronectin binding form a contiguous epitope consisting of two exposed loops connecting the central fourstranded β-sheet in uPAR domain I (Trp32, Arg58, and Ile63) as well as a proximal region of the flexible linker peptide connecting uPAR domains I and II (Arg91 and Tyr92). This binding topology provides the molecular basis for the observation that uPAR can form a ternary complex with uPA and vitronectin. Furthermore, it raises the intriguing possibility that the canonical receptor and inhibitor for uPA (uPAR and PAI-1) may have reached a convergent solution for binding to the somatomedin B domain of vitronectin.


Journal of Biological Chemistry | 1999

Mapping Part of the Functional Epitope for Ligand Binding on the Receptor for Urokinase-type Plasminogen Activator by Site-directed Mutagenesis

Henrik Gårdsvoll; Keld Danø; Michael Ploug

The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid anchored multidomain member of the Ly-6/uPAR protein domain superfamily. Studies by site-directed photoaffinity labeling, chemical cross-linking, and ligand-induced protection against chemical modification have highlighted the possible involvement of uPAR domain I and particularly loop 3 thereof in ligand binding (Ploug, M. (1998) Biochemistry 37, 16494–16505). Guided by these results we have now performed an alanine scanning analysis of this region in uPAR by site-directed mutagenesis and subsequently measured the effects thereof on the kinetics of uPA binding in real-time by surface plasmon resonance. Only four positions in loop 3 of uPAR domain I exhibited significant changes in the contribution to the free energy of uPA binding (ΔΔG ≥ 1.3 kcal mol−1) upon single-site substitutions to alanine (i.e. Arg53, Leu55, Tyr57, and Leu66). The energetic impact of these four alanine substitutions was not caused by gross structural perturbations, since all monoclonal antibodies tested having conformation-dependent epitopes on this domain exhibited unaltered binding kinetics. These sites together with a three-dimensional structure for uPAR may provide an appropriate target for rational drug design aimed at developing new receptor binding antagonists with potential application in cancer therapy.


Journal of Biological Chemistry | 2006

Characterization of the functional epitope on the urokinase receptor. Complete alanine scanning mutagenesis supplemented by chemical cross-linking.

Henrik Gårdsvoll; Bernard Gilquin; Marie Hélène Le Du; André Ménez; Thomas J. D. Jørgensen

The high affinity interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) represents one of the key regulatory steps in cell surface-associated plasminogen activation. On the basis on our crystal structure solved for uPAR in complex with a peptide antagonist, we recently proposed a model for the corresponding complex with the growth factor-like domain of uPA (Llinas et al. (2005) EMBO J. 24, 1655-1663). In the present study, we provide experimental evidence that consolidates and further develops this model using data from a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were determined by surface plasmon resonance. This complete alanine scanning of uPAR highlighted the involvement of 20 surface-exposed side chains in this interaction. Mutations causing ΔΔG ≥ 1 kcal/mol for the uPA interaction are all located within or at the rim of the central cavity uniquely formed by the assembly of all three domains in uPAR, whereas none are found outside this crevice. Identification of specific cross-linking sites in uPAR and pro-uPA enabled us to build a model of the uPAR·uPA complex in which the kringle domain of uPA was positioned by the constraints established by the range of these cross-linkers. The nature of this interaction is predominantly hydrophobic and highly asymmetric, thus emphasizing the importance of the shape and size of the central cavity when designing low molecular mass antagonists of the uPAR/uPA interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

Anil K. Ghosh; Isabelle Coppens; Henrik Gårdsvoll; Marcelo Jacobs-Lorena

Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody inhibits oocyst development of both Plasmodium berghei and Plasmodium falciparum, suggesting that enolase may act as an invasion ligand. Importantly, we demonstrate that surface enolase captures plasminogen from the mammalian blood meal via its lysine motif (DKSLVK) and that this interaction is essential for midgut invasion, because plasminogen depletion leads to a strong inhibition of oocyst formation. Although addition of recombinant WT plasminogen to depleted serum rescues oocyst formation, recombinant inactive plasminogen does not, thus emphasizing the importance of plasmin proteolytic activity for ookinete invasion. The results support the hypothesis that enolase on the surface of Plasmodium ookinetes plays a dual role in midgut invasion: by acting as a ligand that interacts with the midgut epithelium and, further, by capturing plasminogen, whose conversion to active plasmin promotes the invasion process.


Journal of Biological Chemistry | 2010

Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy.

Lin Lin; Henrik Gårdsvoll; Qing Huai; Mingdong Huang; Michael Ploug

The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) is decisive for cell surface-associated plasminogen activation. Because plasmin activity controls fibrinolysis in a variety of pathological conditions, including cancer and wound healing, several intervention studies have focused on targeting the uPA·uPAR interaction in vivo. Evaluations of such studies in xenotransplanted tumor models are, however, complicated by the pronounced species selectivity in this interaction. We now report the molecular basis underlying this difference by solving the crystal structure for the murine uPA·uPAR complex and demonstrate by extensive surface plasmon resonance studies that the kinetic rate constants for this interaction can be swapped completely between these orthologs by exchanging only two residues. This study not only discloses the structural basis required for a successful rational design of the species selectivity in the uPA·uPAR interaction, which is highly relevant for functional studies in mouse models, but it also suggests the possible development of general inhibitors that will target the uPA·uPAR interaction across species barriers.


Biochemical Journal | 2004

Structural analysis and tissue localization of human C4.4A: a protein homologue of the urokinase receptor

Line V. Hansen; Henrik Gårdsvoll; Boye Schnack Nielsen; Leif R. Lund; Keld Danø; Ole Nørregaard Jensen; Michael Ploug

C4.4A, a structural homologue of the urokinase-type plasminogen activator receptor (uPAR), was originally identified as a metastasis-associated membrane protein, but little is known about its structural and functional properties. Therefore, we expressed, purified and characterized a soluble truncated form of human C4.4A, and used this protein to produce specific polyclonal anti-C4.4A antibodies. By immunohistochemistry we observed a pronounced surface staining for C4.4A in suprabasal keratinocytes of chronic human wounds and found C4.4A expression markedly upregulated in migrating keratinocytes during re-epithelisation of incisional skin wounds. Phorbol-ester-induced hyperplasia of mouse skin is also accompanied by a significant induction of C4.4A expression in the multilayered, suprabasal keratinocytes. C4.4A contains two Ly-6 (leucocyte antigen 6)/uPAR/alpha-neurotoxin modules. Our recombinant human C4.4A is extensively modified by post-translational glycosylation, which include 5-6 N-linked carbohydrates primarily located in or close to its second Ly-6/uPAR/alpha-neurotoxin module and approximately 15 O-linked carbohydrates clustered in a Ser/Thr/Pro-rich region at the C-terminus. A highly protease-sensitive region (Tyr200-Arg204) is located between these two clusters of N- and O-linked carbohydrates. The natural, glycolipid-anchored C4.4A from amnion membranes of human term placenta exhibits similar properties. Using recombinant, soluble C4.4A or MCF 7 cells, which express significant amounts of GPI-anchored C4.4A, we find no evidence for an interaction between C4.4A and uPA, a property suggested previously for rat C4.4A. Collectively these data indicate that C4.4A, although being a structural homologue of uPAR, is unlikely to have a functional overlap with uPAR.


Frontiers in Bioscience | 2008

Structure and ligand interactions of the urokinase receptor (uPAR).

Magnus Kjaergaard; Line V. Hansen; Benedikte Jacobsen; Henrik Gårdsvoll

The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane glycoprotein, which is responsible for focalizing plasminogen activation to the cell surface through its high-affinity binding to the serine protease uPA. This tight interaction (KD less than 1 nM) is accomplished by an unusually large and hydrophobic binding cavity in uPAR that is created by a unique interdomain assembly involving all three homologous domains of the receptor. These domains belong to the Ly-6/uPAR (LU) protein domain family, which is defined by a consensus sequence predominantly based on disulfide connectivities, and they adopt a characteristic three-finger fold. Interestingly, the gene for uPAR is localized in a cluster of 6 homologous genes encoding proteins with multiple LU-domains. The structural biology of uPAR will be reviewed with special emphasis on its multidomain composition and the interaction with its natural protein ligands, i.e. the serine protease uPA and the matrix protein vitronectin.

Collaboration


Dive into the Henrik Gårdsvoll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. D. Jørgensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif R. Lund

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge