Henrik Kratz
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Kratz.
Sensors and Actuators A-physical | 2002
Johan Köhler; Johan Bejhed; Henrik Kratz; Fredrik Bruhn; Ulf Lindberg; Klas Hjort; Lars Stenmark
A hybrid cold gas microthruster system suitable for low Δv applications on spacecraft have been developed. Microelectromechanical system (MEMS) components together with fine-mechanics form the micr ...
Review of Scientific Instruments | 2010
Pekka Janhunen; Petri Toivanen; Jouni Polkko; S. Merikallio; Pekka Salminen; Edward Hæggström; Henri Seppänen; R. Kurppa; Jukka Ukkonen; Sergiy Kiprich; Greger Thornell; Henrik Kratz; Lutz Richter; Olaf Krömer; Roland Rosta; Mart Noorma; J. Envall; S. Lätt; Giovanni Mengali; Alessandro Antonio Quarta; Hannu Koivisto; Olli Tarvainen; Taneli Kalvas; Janne Kauppinen; Antti Nuottajärvi; A. N. Obraztsov
The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.
IEEE Transactions on Antennas and Propagation | 2006
Erik Öjefors; Henrik Kratz; Katia Grenier; Robert Plana; Anders Rydberg
The integration of K-band (20-40 GHz) full wavelength square wire- and slot-loop antennas on low resistivity (11-70 Omegacm) silicon substrates is addressed. By the use of polymer or silicon oxide/nitride membranes to support the slot or wire loop over micromachined trenches the efficiency of the antennas is enhanced while the majority of the bulk silicon within the aperture of the antenna is preserved to enable the integration of active devices. A 3.6times3.6 mm2 large slot loop antenna chip with 200 mum micromachined trench width yields 1.5 dBi gain at 29.5 GHz, while 1.0 dBi gain is obtained at 24 GHz for a wire loop antenna on a 4.5times4.5 mm2 large chip with 360 mum wide trenches
IEEE Transactions on Antennas and Propagation | 2009
Shi Cheng; Hanna Yousef; Henrik Kratz
The design, fabrication and characterization of 79 GHz slot antennas based on substrate integrated waveguides (SIW) are presented in this paper. All the prototypes are fabricated in a polyimide flex foil using printed circuit board (PCB) fabrication processes. A novel concept is used to minimize the leakage losses of the SIWs at millimeter wave frequencies. Different losses in the SIWs are analyzed. SIW-based single slot antenna, longitudinal and four-by-four slot array antennas are numerically and experimentally studied. Measurements of the antennas show approximately 4.7%, 5.4% and 10.7% impedance bandwidth (S11=-10 dB) with 2.8 dBi, 6.0 dBi and 11.0 dBi maximum antenna gain around 79 GHz, respectively. The measured results are in good agreement with the numerical simulations.
Journal of Micromechanics and Microengineering | 2012
Kristoffer Palmer; Henrik Kratz; Hugo Nguyen; Greger Thornell
Thermal flow sensors have been designed, fabricated, and characterized. All bulk material in these devices is silicon so that they are integratable in silicon-based microsystems. To mitigate heat losses and to allow for use of corrosive gases, the heating and sensing thin film titanium/platinum elements, injecting and extracting heat, respectively, from the flow, are placed outside the channel on top of a membrane consisting of alternating layers of stress-balancing silicon dioxide and silicon nitride. For the fabrication, an unconventional bond surface protection method using sputter-deposited aluminum instead of thermal silicon dioxide is used in the process steps prior to silicon fusion bonding. A method for performing lift-off on top of the transparent membrane was also developed. The sensors, measuring 9.5???9.5?mm2, are characterized in calorimetric and time-of-flight modes with nitrogen flow rates between 0 sccm and 300 sccm. The maximum calorimetric sensor flow signal and sensitivity are 0.95 mV and 29 ?V sccm?1, respectively, with power consumption less than 40?mW. The time-of-flight mode is found to have a wider detectable flow range compared with calorimetric mode, and the time of flight measured indicates a response time of the sensor in the millisecond range. The design and operation of a sensor with high sensitivity and large flow range are discussed. A key element of this discussion is the configuration of the array of heaters and gauges along the channel to obtain different sensitivities and extend the operational range. This means that the sensor can be tailored to different flow ranges.
Sensors and Actuators A-physical | 2006
Henrik Kratz; Erik Öjefors; Lars Stenmark
A generic dielectric constant reduction method for silicon antenna substrates is presented in detail along with a process description to produce functional dielectric layers for planar antennas. Virtually any dielectric constant below 11.9 down to 3.8 aimed for in this paper can be produced. Very small honeycomb cells with wall thickness of 16 /spl mu/m and inner wall length of 86.6 /spl mu/m is etched down using deep reactive ion etch (DRIE) to 475 /spl mu/m depth in each of two 525 /spl mu/m 4-inch high ohmic wafers. These two wafers are bonded together with the etched side of both wafers facing each other. A volumetric averaging yields an average dielectric constant of 3.8 for the two bonded wafers. By adjusting the etch depth, different dielectric constants for bonded pairs of silicon wafers are attainable. A demonstration of the concept has been physically realized showing an increase in the resonance frequency of a simple coaxial-fed disk-patch antenna with a simulated resonance frequency of 2.5 GHz.
oceans conference | 2011
Jonas Jonsson; Johan Sundqvist; Hugo Nguyen; Henrik Kratz; Martin Berglund; Sam Ogden; Kristoffer Palmer; Katarina Smedfors; Sven Wagner; Greger Thornell
Remotely operated vehicles (ROVs) are commonly used for sub-surface exploration. However, multi-functional ROVs tend to be fairly large, while preferred small and compact ROVs suffer from limited functionality. The Deeper Access, Deeper Understanding (DADU) project aims to develop a small submersible concept using miniaturization technologies to enable a high functionality. An operator is able to maneuver the vehicle with five degrees of freedom using eight small thrusters, while a set of accelerometers and gyros monitor the orientation of the submersible. A single fiber optic cable will connect the submersible to a control station and enable simultaneous data and command transfers. Rechargeable battery packs provide power to the submersibles subsystems during operation. These will be rechargeable through the fiber connection. A forward looking camera is aided by a laser topography measurement system, where distances, sizes and shapes of objects in view can be determined to within 0.5 cm. For murkier environments, or when a more extensive mapping of the surroundings is needed, the small high-frequency side-scanning sonar can be used. Salinity calculations of the water will be available through measurements of the conductivity, temperature and depth. Samples of water and particles within it will be enabled through a water sampler with an enriching capability. Flow sensors will be able to measure the water movement around the submersibles hull. The submersible and its subsystems are under continuous development. The vehicle itself, and its subsystems as stand-alone instruments, will enable the exploration of previously unreachable submerged environments, such as the sub-glacial lakes found in Iceland and Antarctica, or other submerged small environments, such as pipe and cave systems.
IEEE\/ASME Journal of Microelectromechanical Systems | 2009
Hanna Yousef; Shi Cheng; Henrik Kratz
Substrate integrated waveguides (SIWs) are presented and demonstrated in a flexible printed circuit board (flex PCB) for application in the 77-81 GHz range. The vertical walls of the SIWs presented in this paper consist of multiple electrodeposited metallic wires. The diameters of these wires and the spacing between them are on the order of hundreds of nanometers. Hence, the walls can be seen as continuous metallic walls, and the leakage losses through them become negligible. In turn, the SIWs presented in this paper can operate at higher frequencies compared with previously presented structures that are realized with PCB fabrication processes. The attenuation of the SIWs is comparable to that of microstrip lines on the same sample. The SIWs are successfully demonstrated in a SIW-based slot antenna. The antenna gain along the z-axis (normal-to-plane) was found to be around 2.8 dBi at 78 GHz which is in agreement with the simulated values. [2008-0047]
Journal of Micromechanics and Microengineering | 2010
Kristoffer Palmer; Sara Lotfi; Martin Berglund; Greger Thornell; Henrik Kratz
The design, fabrication and evaluation of an electrothermally actuated micromachined beam steering device for use in a free-space optical communication system intended for use on micro- and nanospacecraft in kilometer-sized formations are presented. SU-8 confined in v-grooves is heated to create bending movement in two orthogonal directions for two-axial steering with large static bending angles and low actuation voltages. Standard MEMS processing is used to fabricate the devices with square mirror side lengths of 1, 3.5 and 5 mm. In addition, a method to prevent thermal damage to SU-8 during deep reactive ion etching has been successfully developed. Characterization shows optical scan ranges larger than 40° in both directions with the maximum driving voltage of 16 V corresponding to a total power consumption of 1.14 W. Infrared imaging is used to investigate thermal cross-talk between actuators for the two scanning directions. It is found that a silicon backbone on the joint backside is crucial for device performance. Differences from expected performance are believed to arise from the SU-8 curing process and excessive heating during fabrication. A finite element method simulation is used to find the eigenfrequencies of the structures, and these are in good agreement with the measured frequency response.
Proceedings of SPIE, the International Society for Optical Engineering | 2009
Sara Lotfi; Kristoffer Palmer; Henrik Kratz; Greger Thornell
Optical intra-communication links are investigated by several currently operational qualification missions. Compared with RF communication systems, the optical domain obtains a wider bandwidth, enables miniaturized spacecraft and reduced power consumption. In this project, a microtransmitter is designed and manufactured for formation flying spacecraft with transmission rates of 1 Gbit/s. Simulations in Matlab and Simulink show that a BER of 10-9 can be achieved with aperture sizes of 1 cm and a transmitter output peak power of 12 mW for a distance of 10 km. The results show that the performance of the communication link decreases due to mechanical vibrations in the spacecraft together with a narrow laser beam. A dual-axis microactuator designed as a deflectable mirror has been developed for the laser beam steering where the fabrication is based on a double-sided, bulk micromachining process. The mirror actuates by joints consisting of v-grooves filled with SU-8 polymer. The deflection is controlled by integrated resistive heaters in the joints causing the polymer to expand thermally. Results show that the mirror actuates 20-30° in the temperature interval 25-250°C. Flat Fresnel lenses made of Pyrex 7740 are used to collimate the laser beam. These lenses are simulated in the Comsol software and optimized for a 670 nm red VCSEL. The lenses are manufactured using lithography and reactive ion etching. All tests are made in a normal laboratory environment, but the effect of the space environment is discussed.