Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Rasmus Andersen is active.

Publication


Featured researches published by Henrik Rasmus Andersen.


Water Research | 2011

Determination of sorption of seventy-five pharmaceuticals in sewage sludge

Maritha Hörsing; Anna Ledin; Roman Grabic; Jerker Fick; Mats Tysklind; Jes la Cour Jansen; Henrik Rasmus Andersen

Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L(-1) to μg L(-1) which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1×10(4) and 3.8×10(7), 1.1×10(-2) and 6.1×10(4) and 9.2×10(-3) and 1.1 L kg(-1), respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%).


Water Research | 2012

Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.

Per Falås; A. Baillon-Dhumez; Henrik Rasmus Andersen; Anna Ledin; J. la Cour Jansen

Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process.


Science of The Total Environment | 2013

Ecotoxicity of carbamazepine and its UV photolysis transformation products

Erica Donner; Tina Kosjek; Signe Qualmann; Kresten Ole Kusk; Ester Heath; D. Michael Revitt; Anna Ledin; Henrik Rasmus Andersen

Carbamazepine, an anti-epileptic pharmaceutical agent commonly found in wastewater, is highly recalcitrant to standard wastewater treatment practices. This study investigated the mixture toxicity of carbamazepine transformation products formed during ultraviolet (UV) photolysis using three standard ecotoxicity assays (representing bacteria, algae and crustaceans). UV-treatment of 6 mg L(-1) carbamazepine solution was carried out over a 120 min period and samples were removed periodically over the course of the experiment. Quantification results confirmed the degradation of carbamazepine throughout the treatment period, together with concurrent increases in acridine and acridone concentrations. Ecotoxicity was shown to increase in parallel with carbamazepine degradation indicating that the mixture of degradation products formed was more toxic than the parent compound, and all three ecotoxicity endpoints were still inhibited >60% relative to control populations upon dosing with 90+min UV-treated carbamazepine solution. Single compound toxicity testing also confirmed the higher toxicity of measured degradation products relative to the parent compound. These results show that transformation products considerably more toxic than carbamazepine itself may be produced during UV-treatment of wastewater effluents and/or photo-induced degradation of carbamazepine in natural waters. This study highlights the need to consider mixture toxicity and the formation and persistence of toxicologically relevant transformation products when assessing the environmental risks posed by pharmaceutical compounds.


Science of The Total Environment | 2013

Required ozone doses for removing pharmaceuticals from wastewater effluents

Maria G. Antoniou; G. Hey; Sergio Rodríguez Vega; Aikaterini Spiliotopoulou; Jerker Fick; Mats Tysklind; Jes la Cour Jansen; Henrik Rasmus Andersen

The aim of the this study was to investigate the ozone dosage required to remove active pharmaceutical ingredients (APIs) from biologically treated wastewater of varying quality, originated from different raw wastewater and wastewater treatment processes. Secondary effluents from six Swedish wastewater treatment plants (WWTP) were spiked with 42 APIs (nominal concentration μg/L) and treated with different O₃ doses (0.5-12.0 mg/L ozone) in bench-scale experiments. In order to compare the sensitivity of APIs in each matrix, the specific dose of ozone required to achieve reduction by one decade of each investigated API (DDO₃) was determined for each effluent by fitting a first order equation to the remaining concentration of API at each applied ozone dose. Ozone dose requirements were found to vary significantly between effluents depending on their matrix characteristics. The specific ozone dose was then normalized to the dissolved organic carbon (DOC) of each effluent. The DDO₃/DOC ratios were comparable for each API between the effluents. 15 of the 42 investigated APIs could be classified as easily degradable (DDO₃/DOC ≤ 0.7), while 19 were moderately degradable (0.7 < DDO₃/DOC ≤ 1.4), and 8 were recalcitrant towards O₃-treatment (DDO₃/DOC >1.4). Furthermore, we predict that a reasonable estimate of the ozone dose required to remove any of the investigated APIs may be attained by multiplying the experimental average DDO₃/DOC obtained with the actual DOC of any effluent.


Environmental Toxicology and Chemistry | 2011

Endocrine potency of wastewater: Contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays

Kresten Ole Kusk; Tanja Krüger; Manhai Long; Camilla Taxvig; Anne E. Lykkesfeldt; Hanne Frederiksen; Anna-Maria Andersson; Henrik Rasmus Andersen; Kamilla Marie Speht Hansen; Christine Nellemann; Eva Cecilie Bonefeld-Jørgensen

Industrial and municipal effluents are important sources of endocrine disrupting compounds (EDCs) discharged into the aquatic environment. This study investigated the endocrine potency of wastewater and the cleaning efficiency of two typical urban Danish sewage treatment plants (STPs), using chemical analysis and a battery of bioassays. Influent samples, collected at the first STP grate, and effluent samples, collected after the sewage treatment, were extracted using solid phase extraction. Extracts were analyzed for the content of a range of industrial chemicals with endocrine disrupting properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl hydrocarbon, and thyroid receptors as well as the steroid hormone synthesis. The early-life stage (ELS) development was tested in a marine copepod. The concentrations of all analyzed chemicals were reduced in effluents compared with influents, and for some to below the detection limit. Influent as well as effluent samples from both STPs were found to interact with all four receptors and to interfere with the steroid hormone synthesis showing the presence of measured EDCs. Both influent samples and one of the effluent samples inhibited the development of the copepod Acartia tonsa. In conclusion, the presence of EDCs was reduced in the STPs but not eliminated, as verified by the applied bioassays that all responded to the extracts of effluent samples. Our data suggest that the wastewater treatment processes are not efficient enough to prevent contamination of environmental surface waters.


Water Research | 2012

Effect of pH on the formation of disinfection byproducts in swimming pool water – Is less THM better?

Kamilla Marie Speht Hansen; Sarah Willach; Maria G. Antoniou; Hans Mosbæk; Hans-Jørgen Albrechtsen; Henrik Rasmus Andersen

This study investigated the formation and predicted toxicity of different groups of disinfection byproducts (DBPs) from human exudates in relation to chlorination of pool water at different pH values. Specifically, the formation of the DBP groups trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs) and trichloramine (NCl(3)), resulting from the chlorination of body fluid analog, were investigated at 6.0 ≤ pH ≤ 8.0. Either the initial concentration of active chorine or free chlorine was kept constant in the tested pH range. THM formation was reduced by decreasing pH but HAN, and NCl(3) formation increased at decreasing pH whereas the formation of HAAs remained constant. Under our experimental conditions, the formation of NCl(3) (suspected asthma inducing compound) at pH = 6.0 was an order of magnitude higher than at pH = 7.5. Furthermore, the effect of the presence of bromide on DBP formation was investigated and found to follow the same pH dependency as without bromide present, with the overall DBP formation increasing, except for HAAs. Estimation of genotoxicity and cytotoxicity of the chlorinated human exudates showed that among the quantified DBP groups, HAN formation were responsible for the majority of the toxicity from the measured DBPs in both absence and presence of bromide.


Water Science and Technology | 2012

Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants

Per Falås; Henrik Rasmus Andersen; Anna Ledin; Jes la Cour Jansen

During the last decade, several screening programs for pharmaceuticals at Swedish wastewater treatment plants (WWTPs) have been conducted by research institutes, county councils, and wastewater treatment companies. In this study, influent and effluent concentrations compiled from these screening programs were used to assess the occurrence and reduction of non-antibiotic pharmaceuticals for human usage. The study is limited to full-scale WWTPs with biological treatment. Based on the data compiled, a total of 70 non-antibiotic pharmaceuticals have been detected, at concentrations ranging from a few ng/L to several μg/L, in the influent water. The influent concentrations were compared with the sale volumes and for many pharmaceuticals it was shown that only a small fraction of the amount sold reaches WWTPs as dissolved parent compounds. Pharmaceuticals with low reduction degrees at traditional WWTPs were identified. Further comparison based on the biological treatment showed lower reduction degrees for several pharmaceuticals in trickling filter plants compared with activated sludge plants with nitrogen removal.


Science of The Total Environment | 2013

Photolytic removal of DBPs by medium pressure UV in swimming pool water

Kamilla Marie Speht Hansen; Raissa Zortea; Aurelia Piketty; Sergio Rodríguez Vega; Henrik Rasmus Andersen

Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes.


Environmental Technology | 2012

Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid

G. Hey; Anna Ledin; Jes la Cour Jansen; Henrik Rasmus Andersen

Removal of six active pharmaceutical ingredients in wastewater was investigated using chlorine dioxide (ClO2) or peracetic acid (PAA) as chemical oxidants. Four non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, diclofenac and mefenamic acid) and two lipid-regulating agents (gemfibrozil and clofibric acid, a metabolite of clofibrate) were used as target substances at 40 μg/L initial concentration. Three different wastewaters types originating from two wastewater treatment plants (WWTPs) were used. One wastewater was collected after extended nitrogen removal in activated sludge, one after treatment with high-loaded activated sludge without nitrification, and one from the final effluent from the same plant where nitrogen removal was made in trickling filters for nitrification and moving-bed biofilm reactors for denitrification following the high-loaded plant. Of the six investigated compounds, only clofibric acid and ibuprofen were not removed when treated with ClO2 up to 20 mg/L. With increasing PAA dose up to 50 mg/L, significant removal of most of the pharmaceuticals was observed except for the wastewater with the highest chemical oxygen demand (COD). This indicates that chemical oxidation with ClO2 could be used for tertiary treatment at WWTPs for active pharmaceutical ingredients, whereas PAA was not sufficiently efficient.


RSC Advances | 2014

Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

Young-Chul Lee; Kyubock Lee; Yuhoon Hwang; Henrik Rasmus Andersen; Bohwa Kim; So Yeun Lee; Moon-Hee Choi; Ji-Yeon Park; Young-Kyu Han; You-Kwan Oh; Yun Suk Huh

Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay–nZVI ratios), the stability of nZVI was investigated as a function of sedimentation rate. Aminoclay-coated nZVI (aminoclay–nZVI composites) showed optimal dispersibility at the 1.0 ratio, resulting in the smallest aggregated size and uniform coating of aminoclay nanoparticles onto nZVI due to electrostatic attraction between nZVI and aminoclay nanoparticles. This silica-coated nZVI composite (ratio 1.0) exhibited a highly positively charged surface (∼+40 mV) and a ferromagnetic property (∼30 emu g−1). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g L−1 loading under a magnetic field. In a scaled-up (24 L) microalga harvesting process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay–nZVI composites, can be applied in a continuous harvesting mode.

Collaboration


Dive into the Henrik Rasmus Andersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Mines

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ravi Kumar Chhetri

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ledin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Yuhoon Hwang

Seoul National University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mogens Havsteen Jakobsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge