Henrik Stender
Applied Biosystems
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Stender.
Journal of Clinical Microbiology | 2002
Kenneth Oliveira; Gary W. Procop; Deborah A. Wilson; James M. Coull; Henrik Stender
ABSTRACT A new fluorescence in situ hybridization (FISH) method with peptide nucleic acid (PNA) probes for identification of Staphylococcus aureus directly from positive blood culture bottles that contain gram-positive cocci in clusters (GPCC) is described. The test (the S. aureus PNA FISH assay) is based on a fluorescein-labeled PNA probe that targets a species-specific sequence of the 16S rRNA of S. aureus. Evaluations with 17 reference strains and 48 clinical isolates, including methicillin-resistant and methicillin-susceptible S. aureus species, coagulase-negative Staphylococcus species, and other clinically relevant and phylogenetically related bacteria and yeast species, showed that the assay had 100% sensitivity and 96% specificity. Clinical trials with 87 blood cultures positive for GPCC correctly identified 36 of 37 (97%) of the S. aureus-positive cultures identified by standard microbiological methods. The positive and negative predictive values were 100 and 98%, respectively. It is concluded that this rapid method (2.5 h) for identification of S. aureus directly from blood culture bottles that contain GPCC offers important information for optimal antibiotic therapy.
Journal of Microbiological Methods | 2002
Henrik Stender; Mark J. Fiandaca; Jens J. Hyldig-Nielsen; James M. Coull
The acceptance of rRNA sequence diversity as a criterion for phylogenetic discrimination heralds the transition from microbiological identification methods based on phenotypic markers to assays employing molecular techniques. Robust amplification assays and sensitive direct detection methods are rapidly becoming the standard protocols of microbiology laboratories. The emergence of peptide nucleic acid (PNA) from its status as an academic curiosity to that of a promising and powerful molecular tool, coincides with, and complements, the transition to rapid molecular tests. The unique properties of PNA enable the development of assay formats, which go above and beyond the possibilities of DNA probes. PNA probes targeting specific rRNA sequences of yeast and bacteria with clinical, environmental, and industrial value have recently been developed and applied to a variety of rapid assay formats. Some simply incorporate the sensitivity and specificity of PNA probes into traditional methods, such as membrane filtration and microscopic analysis; others involve recent techniques such as real-time and end-point analysis of amplification reactions.
Journal of Clinical Microbiology | 2002
Susan Rigby; Gary W. Procop; Gerhard Haase; Deborah Wilson; Geraldine Hall; Cletus Kurtzman; Kenneth Oliveira; Sabina Von Oy; Jens J. Hyldig-Nielsen; James M. Coull; Henrik Stender
ABSTRACT A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management.
Journal of Microbiological Methods | 2001
Heather Perry-O'Keefe; Susan Rigby; Kenneth Oliveira; Ditte Sørensen; Henrik Stender; James M. Coull; Jens J. Hyldig-Nielsen
A standardized fluorescent in situ hybridization (FISH) method using Peptide Nucleic Acid (PNA) probes for analysis of gram-negative and gram-positive bacteria, as well as yeast, has been developed. Fluorescently labeled PNA probes targeting specific rRNA sequences of Escherichia coli, Pseudomonas aeruginosa, Staphyloccocus aureus, Salmonella were designed, as well as PNA probes targeting eubacteria and eucarya. These PNA probes were evaluated by PNA FISH using 27 bacterial and 1 yeast species, representing both phylogenetically closely related species, as well as species important to both clinical and industrial settings. The S. aureus and P. aeruginosa PNA probes did not cross react with any of the organisms tested, whereas the E. coli PNA probe, as expected from sequence data, also detected Shigella species. The Salmonella PNA probe reacted with all of the 13 Salmonella strains, representing the 7 subspecies of Salmonella, however, it is also complementary to a few other bacterial species. The eubacteria- and eucarya-specific PNA probes detected all bacterial species and one yeast species, respectively. The general applicability of the PNA FISH method made simultaneous identification of multiple species, both gram-negative and gram-positive, in a mixed population an attractive possibility never accomplished using DNA probes. Four color images using differently labeled PNA probes showed simultaneous identification of E. coli, P. aeruginosa, S. aureus and Salmonella, thereby demonstrating the potential of multiplex FISH for various diagnostic applications within both clinical and industrial microbiology.
Journal of Clinical Microbiology | 2008
Janeen Shepard; Rachel M. Addison; Barbara D. Alexander; Phyllis Della-Latta; Michael Gherna; Gerhard Haase; Gerri S. Hall; Jennifer K. Johnson; William G. Merz; Heidrun Peltroche-Llacsahuanga; Henrik Stender; Richard A. Venezia; Deborah A. Wilson; Gary W. Procop; Fann Wu; Mark J. Fiandaca
ABSTRACT We evaluated the performance of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization (PNA FISH) method, a rapid two-color assay for detection of C. albicans and C. glabrata, in a multicenter study. The assay is designed for use directly from positive blood culture bottles in a FISH format. Intact, fixed cells are labeled fluorescent green (C. albicans) or fluorescent red (C. glabrata) by rRNA hybridization of fluorophore-labeled PNA probes. Results are available <3 h after cultures signal positive. An evaluation of 197 routine blood culture bottles newly positive for yeast by Gram staining was performed at five hospitals. The sensitivities of detection for C. albicans, and C. glabrata were 98.7% (78/79) and 100% (37/37), respectively, and the specificity for both components of the assay was 100% (82/82). The assay was also evaluated with 70 fungal reference strains and was challenged in the BacT/ALERT microbiological detection system with spiked blood culture bottles. These results support the use of the assay for rapid, simultaneous identification of C. albicans and C. glabrata in positive blood culture bottles. This rapid assay may aid in the selection of initial antifungal drugs, leading to improved patient outcomes.
Applied and Environmental Microbiology | 2001
Henrik Stender; Cletus P. Kurtzman; Jens J. Hyldig-Nielsen; Ditte Sørensen; Adam J. Broomer; Kenneth Oliveira; Heather Perry-O'Keefe; Andrew Sage; Barbara Young; James M. Coull
ABSTRACT A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification ofBrettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomycesisolates from wine, show that the spoilage organismBrettanomyces belongs to the species D. bruxellensis and that the new method is able to identifyBrettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.
Journal of Clinical Microbiology | 2001
Kenneth Oliveira; Gerhard Haase; Cletus P. Kurtzman; Jens J. Hyldig-Nielsen; Henrik Stender
ABSTRACT The recent discovery of Candida dubliniensis as a separate species that traditionally has been identified asCandida albicans has led to the development of a variety of biochemical and molecular methods for the differentiation of these two pathogenic yeasts. rRNA sequences are well-established phylogenetic markers, and probes targeting species-specific rRNA sequences have been used in diagnostic assays for the detection and identification of microorganisms. Peptide nucleic acid (PNA) is a DNA mimic with improved hybridization characteristics, and the neutral backbone of PNA probes offers significant advantages in whole-cell in situ hybridization assays. In this study, we developed PNA probes targeting the rRNAs ofC. albicans and C. dubliniensis and applied them to a fluorescence in situ hybridization method (PNA FISH) for differentiation between C. albicans and C. dubliniensis. Liquid cultures were smeared onto microscope slides, heat fixed, and then hybridized for 30 min. Unhybridized PNA probe was removed by washing, and smears were examined by fluorescence microscopy. Evaluation of the PNA FISH method using smears of 79C. dubliniensis and 70 C. albicans strains showed 100% sensitivity and 100% specificity for both PNA probes. We concluded that PNA FISH is a powerful tool for the differentiation ofC. albicans and C. dubliniensis.
Journal of Clinical Microbiology | 2003
Kenneth Oliveira; Stephen M. Brecher; Annette Durbin; Daniel S. Shapiro; Donald R. Schwartz; Paola C. De Girolami; Joanna Dakos; Gary W. Procop; Deborah A. Wilson; Chad S. Hanna; Gerhard Haase; Heidrun Peltroche-Llacsahuanga; Kimberle C. Chapin; Michael C. Musgnug; Michael H. Levi; Cynthia Shoemaker; Henrik Stender
ABSTRACT Fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes targeting Staphylococcus aureus 16S rRNA is a novel method for direct identification of S. aureus from positive blood culture bottles. The test (S. aureus PNA FISH) is performed on smears made directly from positive blood culture bottles with gram-positive cocci in clusters (GPCC) and provides results within 2.5 h. A blinded comparison of S. aureus PNA FISH with standard identification methods was performed in collaboration with eight clinical microbiology laboratories. A total of 564 routine blood culture bottles positive for GPCC recovered from both aerobic and anaerobic media from three different manufacturers (ESP, BACTEC, and BacT/Alert) were included in the study. The sensitivity and specificity of S. aureus PNA FISH were 100% (57 of 57) and 99.2% (116 of 117), respectively, with 174 GPCC-positive ESP blood culture bottles, 98.5% (67 of 68) and 98.5% (129 of 131), respectively, with 200 GPCC-positive BACTEC blood culture bottles, and 100% (74 of 74) and 99.1% (115 of 116), respectively, with 190 GPCC-positive BacT/Alert blood culture bottles. It is concluded that S. aureus PNA FISH performs well with commonly used continuously monitoring blood culture systems.
Journal of Clinical Microbiology | 2005
Hanna Hartmann; Henrik Stender; Andrea Schäfer; Ingo B. Autenrieth; Volkhard A. J. Kempf
ABSTRACT Fluorescence in situ hybridization (FISH) using peptide nucleic acid probes (PNAs) allows the identification of Staphylococcus aureus from human blood culture samples. We present data revealing that the combination of PNA FISH and flow cytometry is a possible approach for the noncultural identification of staphylococci in blood cultures.
Journal of Microbiological Methods | 2001
Henrik Stender; Kenneth Oliveira; Susan Rigby; Frederick G. Bargoot; James M. Coull
A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes and an array scanner for rapid detection, identification, and enumeration of Escherichia coli is described. The test utilizes Cy3-labeled peptide nucleic acid (PNA) probes complementary to a specific 16S rRNA sequence of E. coli. Samples were filtered and incubated for 5 h, the membrane filters were then analyzed by fluorescence in situ hybridization and results were visualized with an array scanner. Results were provided as fluorescent spots representing E. coli microcolonies on the membrane filter surface. The number of fluorescent spots correlated to standard colony counts up to 100 colony-forming units per membrane filter. Above this level, better accuracy was obtained with PNA FISH due to the ability of the scanner to resolve neighboring microcolonies, which were not distinguishable as individual colonies once they were visible by eye.