Henrik Stetkær
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Stetkær.
Aequationes Mathematicae | 1997
Henrik Stetkær
SummaryWe produce complete solution formulas of selected functional equations of the formf(x +y) ±f(x + σ (ν)) = ΣI2 =1gl(x)hl(y),x, y∈G, where the functionsf,g1,h1 to be determined are complex valued functions on an abelian groupG and where σ:G→G is an involution ofG. The special case of σ=−I encompasses classical functional equations like d’Alembert’s, Wilson’s first generalization of it, Jensen’s equation and the quadratic equation. We solve these equations, the equation for symmetric second differences in product form and similar functional equations for a general involution σ.
Aequationes Mathematicae | 2000
T. A. Poulsen; Henrik Stetkær
Summary. We solve extensions to groups of the trigonometric addition and subtraction formulas, in which the plus/minus has been replaced by an involutive group automorphism. The groups need not be abelian.
Aequationes Mathematicae | 1996
Henrik Stetkær
We find the set of continuous solutionsf, g of the functional equation
Archive | 1998
Henrik Stetkær
Journal of Functional Analysis | 1985
Henrik Stetkær
\begin{array}{*{20}c} {\sum\limits_{n = 0}^{N - 1} {\omega ^n f(x + \omega ^n y) = Ng(x)f(y),} } & {x,y \in C,} \\ \end{array}
Journal of Mathematical Analysis and Applications | 1979
Henrik Stetkær
Journal of Functional Analysis | 1987
Henrik Schlichtkrull; Henrik Stetkær
(1) whereω = exp(2πi/N) andN ∈ N. We show that if (f, g) ≠ (0, 0) is a continuous solution of (1) theng satisfies the generalized cosine equation
Archive | 2013
Henrik Stetkær
Aequationes Mathematicae | 1994
Henrik Stetkær
\begin{array}{*{20}c} {\sum\limits_{n = 0}^{N - 1} {g(x + \omega ^n y) = Ng(x)g(y),} } & {x,y \in C.} \\ \end{array}
Aequationes Mathematicae | 2004
Henrik Stetkær