Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Stranneheim is active.

Publication


Featured researches published by Henrik Stranneheim.


PLOS ONE | 2010

Increased Throughput by Parallelization of Library Preparation for Massive Sequencing

Sverker Lundin; Henrik Stranneheim; Erik Pettersson; Daniel Klevebring; Joakim Lundeberg

Background Massively parallel sequencing systems continue to improve on data output, while leaving labor-intensive library preparations a potential bottleneck. Efforts are currently under way to relieve the crucial and time-consuming work to prepare DNA for high-throughput sequencing. Methodology/Principal Findings In this study, we demonstrate an automated parallel library preparation protocol using generic carboxylic acid-coated superparamagnetic beads and polyethylene glycol precipitation as a reproducible and flexible method for DNA fragment length separation. With this approach the library preparation for DNA sequencing can easily be adjusted to a desired fragment length. The automated protocol, here demonstrated using the GS FLX Titanium instrument, was compared to the standard manual library preparation, showing higher yield, throughput and great reproducibility. In addition, 12 libraries were prepared and uniquely tagged in parallel, and the distribution of sequence reads between these indexed samples could be improved using quantitative PCR-assisted pooling. Conclusions/Significance We present a novel automated procedure that makes it possible to prepare 36 indexed libraries per person and day, which can be increased to up to 96 libraries processed simultaneously. The yield, speed and robust performance of the protocol constitute a substantial improvement to present manual methods, without the need of extensive equipment investments. The described procedure enables a considerable efficiency increase for small to midsize sequencing centers.


PLOS ONE | 2009

Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

Daniel Nätt; Niclas Lindqvist; Henrik Stranneheim; Joakim Lundeberg; Peter A. Torjesen; Per Jensen

Background Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12∶12 h light∶dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment.


Nature Communications | 2015

Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures.

Tommy Stödberg; Amy McTague; Arnaud Ruiz; Hiromi Hirata; Juan Zhen; Philip Long; Irene Farabella; Esther Meyer; Atsuo Kawahara; Grace Vassallo; Stavros Stivaros; Magnus K. Bjursell; Henrik Stranneheim; Stephanie Tigerschiöld; Bengt Persson; Iftikhar Bangash; Krishna B. Das; Deborah Hughes; Nicole Lesko; Joakim Lundeberg; Rod C. Scott; Annapurna Poduri; Ingrid E. Scheffer; Holly Smith; Paul Gissen; Stephanie Schorge; Maarten E. A. Reith; Maya Topf; Dimitri M. Kullmann; Robert J. Harvey

The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.


Journal of Investigative Dermatology | 2011

Sun-induced nonsynonymous p53 mutations are extensively accumulated and tolerated in normal appearing human skin.

Patrik L. Ståhl; Henrik Stranneheim; Anna Asplund; Lisa Berglund; Fredrik Pontén; Joakim Lundeberg

Here we demonstrate that intermittently sun-exposed human skin contains an extensive number of phenotypically intact cell compartments bearing missense and nonsense mutations in the p53 tumor suppressor gene. Deep sequencing of sun-exposed and shielded microdissected skin from mid-life individuals revealed that persistent p53 mutations had accumulated in 14% of all epidermal cells, with no apparent signs of a growth advantage of the affected cell compartments. Furthermore, 6% of the mutated epidermal cells encoded a truncated protein. The abundance of these events, not taking into account intron mutations and mutations in other genes that also may have functional implications, suggests an extensive tolerance of human cells to severe genetic alterations caused by UV light, with an estimated annual rate of accumulation of ∼35,000 new persistent protein-altering p53 mutations in sun-exposed skin of a human individual.


Bioinformatics | 2010

Classification of DNA sequences using Bloom filters

Henrik Stranneheim; Max Käller; Tobias Allander; Björn Andersson; Lars Arvestad; Joakim Lundeberg

Motivation: New generation sequencing technologies producing increasingly complex datasets demand new efficient and specialized sequence analysis algorithms. Often, it is only the ‘novel’ sequences in a complex dataset that are of interest and the superfluous sequences need to be removed. Results: A novel algorithm, fast and accurate classification of sequences (FACSs), is introduced that can accurately and rapidly classify sequences as belonging or not belonging to a reference sequence. FACS was first optimized and validated using a synthetic metagenome dataset. An experimental metagenome dataset was then used to show that FACS achieves comparable accuracy as BLAT and SSAHA2 but is at least 21 times faster in classifying sequences. Availability: Source code for FACS, Bloom filters and MetaSim dataset used is available at http://facs.biotech.kth.se. The Bloom::Faster 1.6 Perl module can be downloaded from CPAN at http://search.cpan.org/∼palvaro/Bloom-Faster-1.6/ Contacts: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


PLOS ONE | 2012

Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

Haleh Davanian; Henrik Stranneheim; Tove Båge; Maria Lagervall; Leif Jansson; Joakim Lundeberg; Tülay Yucel-Lindberg

Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis.


PLOS ONE | 2011

Scalable Transcriptome Preparation for Massive Parallel Sequencing

Henrik Stranneheim; Beata Werne; Ellen Sherwood; Joakim Lundeberg

Background The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. Methodology In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was compared to the standard manual sample preparation. Conclusion/Significance The automated procedure was used to generate libraries for gene expression profiling on the Illumina HiSeq 2000 platform with the capacity of 12 samples per preparation with a significantly improved throughput compared to the standard manual preparation. The data analysis shows consistent gene expression profiles in terms of sensitivity and quantification of gene expression between the two library preparation methods.


BMC Genomics | 2012

Comparison of total and cytoplasmic mRNA reveals global regulation by nuclear retention and miRNAs

Beata Werne Solnestam; Henrik Stranneheim; Jimmie Hällman; Max Käller; Emma Lundberg; Joakim Lundeberg; Pelin Akan

BackgroundThe majority of published gene-expression studies have used RNA isolated from whole cells, overlooking the potential impact of including nuclear transcriptome in the analyses. In this study, mRNA fractions from the cytoplasm and from whole cells (total RNA) were prepared from three human cell lines and sequenced using massive parallel sequencing.ResultsFor all three cell lines, of about 15000 detected genes approximately 400 to 1400 genes were detected in different amounts in the cytoplasmic and total RNA fractions. Transcripts detected at higher levels in the total RNA fraction had longer coding sequences and higher number of miRNA target sites. Transcripts detected at higher levels in the cytoplasmic fraction were shorter or contained shorter untranslated regions. Nuclear retention of transcripts and mRNA degradation via miRNA pathway might contribute to this differential detection of genes. The consequence of the differential detection was further investigated by comparison to proteomics data. Interestingly, the expression profiles of cytoplasmic and total RNA correlated equally well with protein abundance levels indicating regulation at a higher level.ConclusionsWe conclude that expression levels derived from the total RNA fraction be regarded as an appropriate estimate of the amount of mRNAs present in a given cell population, independent of the coding sequence length or UTRs.


Proteome Science | 2009

A comparison between protein profiles of B cell subpopulations and mantle cell lymphoma cells

Henrik Stranneheim; Lukas M Orre; Janne Lehtiö; Jenny Flygare

BackgroundB-cell lymphomas are thought to reflect different stages of B-cell maturation. Based on cytogenetics and molecular markers, mantle cell lymphoma (MCL) is presumed to derive predominantly from naïve, pre-germinal centre (pre-GC) B lymphocytes. The aim of this study was to develop a method to investigate the similarity between MCL cells and different B-cell compartments on a protein expression level.MethodsSubpopulations of B cells representing the germinal centre (GC), the pre-GC mantle zone and the post-GC marginal zone were isolated from tonsils using automated magnetic cell sorting (AutoMACS) of cells based on their expression of CD27 and IgD. Protein profiling of the B cell subsets, of cell lines representing different lymphomas and of primary MCL samples was performed using top-down proteomics profiling by surface-enhanced laser detection/ionization time-of-flight mass spectrometry (SELDI-TOF-MS).ResultsQuantitative MS data of significant protein peaks (p-value < 0.05) separating the three B-cell subpopulations were generated. Together, hierarchical clustering and principal component analysis (PCA) showed that the primary MCL samples clustered together with the pre- and post-GC subpopulations. Both primary MCL cells and MCL cell lines were clearly separated from the B cells representing the GC compartment.ConclusionAutoMACS sorting generates sufficient purity to enable a comparison between protein profiles of B cell subpopulations and malignant B lymphocytes applying SELDI-TOF-MS. Further validation with an increased number of patient samples and identification of differentially expressed proteins would enable a search for possible treatment targets that are expressed during the early development of MCL.


PLOS ONE | 2009

Correction: Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens

Daniel Nätt; Niclas Lindqvist; Henrik Stranneheim; Joakim Lundeberg; Peter A. Torjesen; Per Jensen

Collaboration


Dive into the Henrik Stranneheim's collaboration.

Top Co-Authors

Avatar

Joakim Lundeberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Wedell

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Beata Werne Solnestam

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Lundberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Max Käller

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Lesko

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Pelin Akan

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge