Henrike Niederholtmeyer
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrike Niederholtmeyer.
Applied and Environmental Microbiology | 2010
Henrike Niederholtmeyer; Bernd T. Wolfstädter; David F. Savage; Pamela A. Silver; Jeffrey C. Way
ABSTRACT Metabolic engineering of cyanobacteria has the advantage that sunlight and CO2 are the sole source of energy and carbon for these organisms. However, as photoautotrophs, cyanobacteria generally lack transporters to move hydrophilic primary metabolites across membranes. To address whether cyanobacteria could be engineered to produce and secrete organic primary metabolites, Synechococcus elongatus PCC7942 was engineered to express genes encoding an invertase and a glucose facilitator, which mediated secretion of glucose and fructose. Similarly, expression of lactate dehydrogenase- and lactate transporter-encoding genes allowed lactate accumulation in the extracellular medium. Expression of the relevant transporter was essential for secretion. Production of these molecules was further improved by expression of additional heterologous enzymes. Sugars secreted by the engineered cyanobacteria could be used to support Escherichia coli growth in the absence of additional nutrient sources. These results indicate that cyanobacteria can be engineered to produce and secrete high-value hydrophilic products.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Walter Bonacci; Poh K. Teng; Bruno Afonso; Henrike Niederholtmeyer; Patricia Grob; Pamela A. Silver; David F. Savage
Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO2-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO2. Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO2 in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.
eLife | 2015
Henrike Niederholtmeyer; Zachary Z. Sun; Yutaka Hori; Enoch Yeung; Amanda Verpoorte; Richard M. Murray; Sebastian J. Maerkl
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data collection, and poor quantitative characterization. Cell-free systems are appealing alternative environments, but it remains questionable whether biological networks behave similarly in cell-free systems and in cells. We characterized in a cell-free system the ‘repressilator’, a three-node synthetic oscillator. We then engineered novel three, four, and five-gene ring architectures, from characterization of circuit components to rapid analysis of complete networks. When implemented in cells, our novel 3-node networks produced population-wide oscillations and 95% of 5-node oscillator cells oscillated for up to 72 hr. Oscillation periods in cells matched the cell-free system results for all networks tested. An alternate forward engineering paradigm using cell-free systems can thus accurately capture cellular behavior. DOI: http://dx.doi.org/10.7554/eLife.09771.001
Proceedings of the National Academy of Sciences of the United States of America | 2013
Henrike Niederholtmeyer; Viktoria Stepanova; Sebastian J. Maerkl
Significance Transcription and translation can be performed in vitro, outside of cells, allowing the assembly of artificial genetic networks. This bottom-up approach to engineering biological networks in a completely defined and minimal environment is instructive to define the rules and limitations of network construction. It is, however, still challenging to implement complex genetic networks in vitro because the reactions are usually performed in a batch format, where reaction products accumulate and synthesis rates decline over time. Here, we addressed this problem by developing a microfluidic device to perform in vitro transcription and translation reactions in continuous mode, where synthesis rates stay constant. This allowed us to build and implement a genetic oscillator that showed sustained oscillations for extended periods of times. Living cells maintain a steady state of biochemical reaction rates by exchanging energy and matter with the environment. These exchanges usually do not occur in in vitro systems, which consequently go to chemical equilibrium. This in turn has severely constrained the complexity of biological networks that can be implemented in vitro. We developed nanoliter-scale microfluidic reactors that exchange reagents at dilution rates matching those of dividing bacteria. In these reactors we achieved transcription and translation at steady state for 30 h and implemented diverse regulatory mechanisms on the transcriptional, translational, and posttranslational levels, including RNA polymerases, transcriptional repression, translational activation, and proteolysis. We constructed and implemented an in vitro genetic oscillator and mapped its phase diagram showing that steady-state conditions were necessary to produce oscillations. This reactor-based approach will allow testing of whether fundamental limits exist to in vitro network complexity.
PLOS ONE | 2011
Christina M. Agapakis; Henrike Niederholtmeyer; Ramil R. Noche; Tami D. Lieberman; Sean G. Megason; Jeffrey C. Way; Pamela A. Silver
Background The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. Results We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. Conclusion Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.
bioRxiv | 2015
Henrike Niederholtmeyer; Zachary Sun; Yutaka Hori; Enoch Yeung; Amanda Verpoorte; Richard M. Murray; Sebastian J. Maerkl
While complex dynamic biological networks control gene expression and metabolism in all living organisms, engineering comparable synthetic networks remains challenging1,2. Conducting extensive, quantitative and rapid characterization during the design and implementation process of synthetic networks is currently severely limited due to cumbersome molecular cloning and the difficulties associated with measuring parts, components and systems in cellular hosts. Engineering gene networks in a cell-free environment promises to be an efficient and effective approach to rapidly develop novel biological systems and understand their operating regimes3-5. However, it remains questionable whether complex synthetic networks behave similarly in cells and a cell-free environment, which is critical for in vitro approaches to be of significance to biological engineering. Here we show that synthetic dynamic networks can be readily implemented, characterized, and engineered in a cell-free framework and consequently transferred to cellular hosts. We implemented and characterized the “repressilator”6, a three-node negative feedback oscillator in vitro. We then used our cell-free framework to engineer novel three-node, four-node, and five-node negative feedback architectures going from the characterization of circuit components to the rapid analysis of complete networks. We validated our cell-free approach by transferring these novel three-node and five-node oscillators to Escherichia coli, resulting in robust and synchronized oscillations reflecting the in vitro observation. We demonstrate that comprehensive circuit engineering can be performed in a cell-free system and that the in vitro results have direct applicability in vivo. Cell-free synthetic biology thus has the potential to drastically speed up design-build-test cycles in biological engineering and enable the quantitative characterization of synthetic and natural networks.
bioRxiv | 2018
Henrike Niederholtmeyer; Cynthia Chaggan; Neal K. Devaraj
Cells in tissues or biofilms communicate with one another through chemical and mechanical signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of natural systems, however, it has remained challenging to implement communication capabilities comparable to living cells. Here we present a porous artificial cell-mimic containing a nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and communicate with neighboring cell-mimics through diffusive protein signals. We show that communication between cell-mimics allowed distribution of tasks, quorum sensing, and cellular differentiation according to local environment. Cell-mimics could be manufactured in large quantities, easily stored, chemically modified, and spatially organized into diffusively connected tissue-like arrangements, offering a means for studying communication in large ensembles of artificial cells.
bioRxiv | 2016
Lea L. de Maddalena; Henrike Niederholtmeyer; Matti Turtola; Zoe Newell Swank; Georgiy A. Belogurov; Sebastian J. Maerkl
Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology. Graphical abstract
Applied Microbiology and Biotechnology | 2010
Steffen N. Lindner; Henrike Niederholtmeyer; Katja Schmitz; Siegfried M. Schoberth; Volker F. Wendisch
ACS Synthetic Biology | 2013
Henrike Niederholtmeyer; Ling Xu; Sebastian J. Maerkl