Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry E. Mang is active.

Publication


Featured researches published by Henry E. Mang.


American Journal of Physiology-renal Physiology | 2012

The p53 inhibitor pifithrin-α can stimulate fibrosis in a rat model of ischemic acute kidney injury

Pierre C. Dagher; Erik Mai; Takashi Hato; So Young Lee; Melissa D. Anderson; Stephanie C. Karozos; Henry E. Mang; Nicole L. Knipe; Zoya Plotkin; Timothy A. Sutton

Inhibition of the tumor suppressor p53 diminishes tubular cell apoptosis and protects renal function in animal models of acute kidney injury (AKI). Therefore, targeting p53 has become an attractive therapeutic strategy in the approach to AKI. Although the acute protective effects of p53 inhibition in AKI have been examined, there is still relatively little known regarding the impact of acute p53 inhibition on the chronic sequelae of AKI. Consequently, we utilized the p53 inhibitor pifithrin-α to examine the long-term effects of p53 inhibition in a rodent model of ischemic AKI. Male Sprague-Dawley rats were subjected to bilateral renal artery clamping for 30 min followed by reperfusion for up to 8 wk. Pifithrin-α or vehicle control was administered at the time of surgery and then daily for 2 days [brief acute administration (BA)] or 7 days [prolonged acute administration (PA)]. Despite the acute protective effect of pifithrin-α in models of ischemic AKI, we found no protection in the microvascular rarefaction at 4 wk or development fibrosis at 8 wk with pifithrin-α administered on the BA schedule compared with vehicle control-treated animals. Furthermore, pifithrin-α administered on a PA schedule actually produced worse fibrosis compared with vehicle control animals after ischemic injury [21%/area (SD4.4) vs.16%/area (SD3.6)] as well as under sham conditions [2.6%/area (SD1.8) vs. 4.7%/area (SD1.3)]. The development of fibrosis with PA administration was independent of microvascular rarefaction. We identified enhanced extracellular matrix production, epithelial-to-mesenchymal transition, and amplified inflammatory responses as potential contributors to the augmented fibrosis observed with PA administration of pifithrin-α.


American Journal of Physiology-renal Physiology | 2011

MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury

So Young Lee; Markus Hörbelt; Henry E. Mang; Nicole L. Knipe; Robert L. Bacallao; Yoshikazu Sado; Timothy A. Sutton

Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.


American Journal of Physiology-renal Physiology | 2008

p53 regulates renal expression of HIF-1α and pVHL under physiological conditions and after ischemia-reperfusion injury

Timothy A. Sutton; Jared Wilkinson; Henry E. Mang; Nicole L. Knipe; Zoya Plotkin; Maya Hosein; Katelyn Zak; Jeremy Wittenborn; Pierre C. Dagher

Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) and is characterized by widespread tubular and microvascular damage. The tumor suppressor p53 is upregulated after IRI and contributes to renal injury in part by promoting apoptosis. Acute, short-term inhibition of p53 with pifithrin-alpha conveys significant protection after IRI. The hypoxia-inducible factor-1 (HIF-1) pathway is also activated after IRI and has opposing effects to those promoted by p53. The balance between the HIF-1 and p53 responses can determine the outcome of IRI. In this manuscript, we investigate whether p53 regulates the HIF-1 pathway in a rodent model of IRI. HIF-1alpha is principally expressed in the collecting tubules (CT) and thick ascending limbs (TAL) under physiological conditions. However, inhibition of p53 with pifithrin-alpha increases the faint expression of HIF-1alpha in proximal tubules (PT) under physiological conditions. Twenty-four hours after IRI, HIF-1alpha expression is decreased in both CT and TAL. HIF-1alpha expression in the PT is not significantly altered after IRI. Acute inhibition of p53 significantly increases HIF-1alpha expression in the PT after IRI. Additionally, pifithrin-alpha prevents the IRI-induced decrease in HIF-1alpha in the CT and TAL. Parallel changes are observed in the HIF-1alpha transcriptive target, carbonic anhydrase-9. Finally, inhibition of p53 prevents the dramatic changes in Von Hippel-Lindau protein morphology and expression after IRI. We conclude that activation of p53 after IRI mitigates the concomitant activation of the protective HIF-1 pathway. Modulating the interactions between the p53 and HIF-1 pathway can provide novel options in the treatment of AKI.


American Journal of Physiology-renal Physiology | 2015

Muc1 is protective during kidney ischemia-reperfusion injury

Núria M. Pastor-Soler; Timothy A. Sutton; Henry E. Mang; Sandra J. Gendler; Cathy S. Madsen; Sheldon Bastacky; Jacqueline Ho; Mohammad M. Al-bataineh; Kenneth R. Hallows; Sucha Singh; Satdarshan P. Monga; Hanako Kobayashi; Volker H. Haase; Rebecca P. Hughey

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.


American Journal of Physiology-renal Physiology | 2016

Novel application of complementary imaging techniques to examine in vivo glucose metabolism in the kidney

Takashi Hato; Allon N. Friedman; Henry E. Mang; Zoya Plotkin; Shataakshi Dube; Gary D. Hutchins; Paul R. Territo; Brian P. McCarthy; Amanda A. Riley; Kumar Pichumani; Craig R. Malloy; Robert A. Harris; Pierre C. Dagher; Timothy A. Sutton

The metabolic status of the kidney is a determinant of injury susceptibility and a measure of progression for many disease processes; however, noninvasive modalities to assess kidney metabolism are lacking. In this study, we employed positron emission tomography (PET) and intravital multiphoton microscopy (MPM) to assess cortical and proximal tubule glucose tracer uptake, respectively, following experimental perturbations of kidney metabolism. Applying dynamic image acquisition PET with 2-18fluoro-2-deoxyglucose (18F-FDG) and tracer kinetic modeling, we found that an intracellular compartment in the cortex of the kidney could be distinguished from the blood and urine compartments in animals. Given emerging literature that the tumor suppressor protein p53 is an important regulator of cellular metabolism, we demonstrated that PET imaging was able to discern a threefold increase in cortical 18F-FDG uptake following the pharmacological inhibition of p53 in animals. Intravital MPM with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) provided increased resolution and corroborated these findings at the level of the proximal tubule. Extending our observation of p53 inhibition on proximal tubule glucose tracer uptake, we demonstrated by intravital MPM that pharmacological inhibition of p53 diminishes mitochondrial potential difference. We provide additional evidence that inhibition of p53 alters key metabolic enzymes regulating glycolysis and increases intermediates of glycolysis. In summary, we provide evidence that PET is a valuable tool for examining kidney metabolism in preclinical and clinical studies, intravital MPM is a powerful adjunct to PET in preclinical studies of metabolism, and p53 inhibition alters basal kidney metabolism.


International Journal of Molecular Sciences | 2016

Inhibition of Toll-Like Receptor 4 Signaling Mitigates Microvascular Loss but Not Fibrosis in a Model of Ischemic Acute Kidney Injury

Pierre C. Dagher; Takashi Hato; Henry E. Mang; Zoya Plotkin; Quentin V. Richardson; Michael Massad; Erik Mai; Sarah E. Kuehl; Paige Graham; Rakesh Kumar; Timothy A. Sutton

The development of chronic kidney disease (CKD) following an episode of acute kidney injury (AKI) is an increasingly recognized clinical problem. Inhibition of toll-like receptor 4 (TLR4) protects renal function in animal models of AKI and has become a viable therapeutic strategy in AKI. However, the impact of TLR4 inhibition on the chronic sequelae of AKI is unknown. Consequently, we examined the chronic effects of TLR4 inhibition in a model of ischemic AKI. Mice with a TLR4-deletion on a C57BL/6 background and wild-type (WT) background control mice (C57BL/6) were subjected to bilateral renal artery clamping for 19 min and reperfusion for up to 6 weeks. Despite the acute protective effect of TLR4 inhibition on renal function (serum creatinine 1.6 ± 0.4 mg/dL TLR4-deletion vs. 2.8 ± 0.3 mg/dL·WT) and rates of tubular apoptosis following ischemic AKI, we found no difference in neutrophil or macrophage infiltration. Furthermore, we observed significant protection from microvascular rarefaction at six weeks following injury with TLR4-deletion, but this did not alter development of fibrosis. In conclusion, we validate the acute protective effect of TLR4 signal inhibition in AKI but demonstrate that this protective effect does not mitigate the sequential fibrogenic response in this model of ischemic AKI.


Clinical & Developmental Immunology | 2017

Endothelial STAT3 Modulates Protective Mechanisms in a Mouse Ischemia-Reperfusion Model of Acute Kidney Injury

Shataakshi Dube; Tejasvi Matam; Jessica Yen; Henry E. Mang; Pierre C. Dagher; Takashi Hato; Timothy A. Sutton

STAT3 is a transcriptional regulator that plays an important role in coordinating inflammation and immunity. In addition, there is a growing appreciation of the role STAT3 signaling plays in response to organ injury following diverse insults. Acute kidney injury (AKI) from ischemia-reperfusion injury is a common clinical entity with devastating consequences, and the recognition that endothelial alterations contribute to kidney dysfunction in this setting is of growing interest. Consequently, we used a mouse with a genetic deletion of Stat3 restricted to the endothelium to examine the role of STAT3 signaling in the pathophysiology of ischemic AKI. In a mouse model of ischemic AKI, the loss of endothelial STAT3 signaling significantly exacerbated kidney dysfunction, morphologic injury, and proximal tubular oxidative stress. The increased severity of ischemic AKI was associated with more robust endothelial-leukocyte adhesion and increased tissue accumulation of F4/80+ macrophages. Moreover, important proximal tubular adaptive mechanisms to injury were diminished in association with decreased tissue mRNA levels of the epithelial cell survival cytokine IL-22. In aggregate, these findings suggest that the endothelial STAT3 signaling plays an important role in limiting kidney dysfunction in ischemic AKI and that selective pharmacologic activation of endothelial STAT3 signaling could serve as a potential therapeutic target.


American Journal of Physiology-renal Physiology | 2003

Injury of the renal microvascular endothelium alters barrier function after ischemia

Timothy A. Sutton; Henry E. Mang; Silvia B. Campos; Ruben M. Sandoval; Mervin C. Yoder; Bruce A. Molitoris


American Journal of Physiology-renal Physiology | 2007

Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury

Markus Hörbelt; So Young Lee; Henry E. Mang; Nicole L. Knipe; Yoshikazu Sado; Andreas Kribben; Timothy A. Sutton


American Journal of Physiology-renal Physiology | 2005

Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury

Timothy A. Sutton; Katherine J. Kelly; Henry E. Mang; Zoya Plotkin; Ruben M. Sandoval; Pierre C. Dagher

Collaboration


Dive into the Henry E. Mang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge