Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry E. Valentin is active.

Publication


Featured researches published by Henry E. Valentin.


Plant Physiology | 2002

Isolation and Characterization of Homogentisate Phytyltransferase Genes from Synechocystis sp. PCC 6803 and Arabidopsis

Beth Savidge; James D. Weiss; Yun-Hua H. Wong; Michael Lassner; Timothy A. Mitsky; Christine K. Shewmaker; Dusty Post-Beittenmiller; Henry E. Valentin

Tocopherols, synthesized by photosynthetic organisms, are micronutrients with antioxidant properties that play important roles in animal and human nutrition. Because of these health benefits, there is considerable interest in identifying the genes involved in tocopherol biosynthesis to allow transgenic alteration of both tocopherol levels and composition in agricultural crops. Tocopherols are generated from the condensation of phytyldiphosphate and homogentisic acid (HGA), followed by cyclization and methylation reactions. Homogentisate phytyltransferase (HPT) performs the first committed step in this pathway, the phytylation of HGA. In this study, bioinformatics techniques were used to identify candidate genes,slr1736 and HPT1, that encode HPT fromSynechocystis sp. PCC 6803 and Arabidopsis, respectively. These two genes encode putative membrane-bound proteins, and contain amino acid residues highly conserved with other prenyltransferases of the aromatic type. A Synechocystissp. PCC 6803 slr1736 null mutant obtained by insertional inactivation did not accumulate tocopherols, and was rescued by the Arabidopsis HPT1 ortholog. The membrane fraction of wild-type Synechocystis sp. PCC 6803 was capable of catalyzing the phytylation of HGA, whereas the membrane fraction from the slr1736 null mutant was not. The microsomal membrane fraction of baculovirus-infected insect cells expressing the Synechocystis sp. PCC 6803slr1736 were also able to perform the phytylation reaction, verifying HPT activity of the protein encoded by this gene. In addition, evidence that antisense expression of HPT1in Arabidopsis resulted in reduced seed tocopherol levels, whereas seed-specific sense expression resulted in increased seed tocopherol levels, is presented.


Journal of Biotechnology | 1997

Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose

Henry E. Valentin; Douglas E. Dennis

A recombinant Escherichia coli strain has been developed that produces poly(3-hydroxybutyrate-co-4-hydroxybutyrate) when grown in complex medium containing glucose. This has been accomplished by introducing into E. coli DH5 alpha separate plasmids harboring the polyhydroxyalkanoate (PHA) biosynthesis genes from Ralstonia eutropha (formerly named Alcaligenes eutrophus) and the succinate degradation genes from Clostridium kluyveri, respectively. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) levels reached 50% of the cell dry weight and contained up to 2.8 mol.% 4-hydroxybutyrate. The molecular weight of the polymer was 1.8 x 10(6).


Applied Microbiology and Biotechnology | 1992

Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria.

Henry E. Valentin; Eun Yeol Lee; Cha Yong Choi; Alexander Steinbüchel

SummaryTwenty-four different strains of aerobic Gram-negative bacteria, mainly belonging to the genera Alcaligenes, Paracoccus, Pseudomonas and Methylobacterium, were examined with respect to their ability to utilize 4-hydroxyvaleric acid (4HV), 4-valerolactone (4VL) and 3-hydroxypropionic acid (3HP) as carbon sources for growth and for accumulation of polyhydroxyalkanoic acid (PHA). A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended for the detection of derivatives obtained from the methanolysis of 4-hydroxybutyric acid (4HB) and 4HV. Most of the Alcaligenes species and P. oxalaticus Ox1 accumulated a terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV) and 4HV as constituents from 4HV or 4VL as sole carbon sources in batch, fed-batch or two-stage fed-batch cultures. Poly(3HB-co-3HV-co-4HV) accumulated from 4HV by A. eutrophus strain NCIB 11599 amounted to approximately 50% of the cell dry matter and was composed of 42.0 mol % 3HB, 52.2 mol % 3HV and 5.6 mol % 4HV, respectively. Pseudomonads, which belong to the rRNA homology group I, were not able to incorporate 4HV. With 3HP as carbon source, the GC analysis provided evidence for the presence of 3HP in the PHA of many bacteria. Nuclear magnetic resonance spectroscopic analysis confirmed that, for example, A. eutrophus strain TF93 accumulated poly(3HB-co-3HP) with 98 mol % 3HB and 2 mol % 3HP if the cells were cultivated in the presence of 0.5% (w/v) 3HP.


Applied Microbiology and Biotechnology | 1994

Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases

Henry E. Valentin; Alexander Steinbüchel

Various hydroxyacyl coenzyme A (CoA) thioesters were synthesized from the corresponding hydroxyalkanoic acid (such as e.g. [3-14C]d-(−)-hydroxybutyric acid, [1-14C]d-lactic acid, [1-14C]l-lactic acid, etc.) and from acetyl-CoA employing the propionate CoA transferase of Clostridium propionicum. Preparative isolation of the thioesters on hydrophobic matrices and analysis by HPLC are reported. These thioesters were subjected to a radiometric or a spectrometric assay of polyhydroxyalkanoic acid (PHA) synthase activity. The latter was based on the release of CoA from, for example, d-(−)-3-hydroxybutyryl-CoA, which was detected spectroscopically at 412 nm by reduction of 5,5′-dithiobis(2-nitrobenzoic acid) and provided a convenient assay of poly(3-hydroxybutyrate) synthase. When [1-14C]lactyl-CoA was used as substrate in a PHA synthase assay employing crude extracts obtained from various wild-type strains, [1-14C]lactyl-CoA was used as a substrate at a rate that was only less than 10−4 of the rate than with [3-14C]d-(−)-3-hydroxybutyryl-CoA or was negligible. One exception was a recombinant strain of Escherichia coli, which overexpressed the PHA synthase complex of Chromatium vinosum and which used [1-14C]d-lactyl-CoA as substrate at a relatively high rate.


The Plant Cell | 2006

The Arabidopsis vitamin E pathway gene5-1 Mutant Reveals a Critical Role for Phytol Kinase in Seed Tocopherol Biosynthesis

Henry E. Valentin; Kim Lincoln; Farhad Moshiri; Pamela K. Jensen; Qungang Qi; Tyamagondlu V. Venkatesh; Balasulojini Karunanandaa; Susan R. Baszis; Susan R. Norris; Beth Savidge; Kenneth J. Gruys

We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G→A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.


Journal of Biotechnology | 1998

Formation of poly(3-hydroxybutyrate-co -3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha

Douglas E. Dennis; M McCoy; A Stangl; Henry E. Valentin; Z Wu

The acetoacetyl-CoA reductase and the polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (formerly Alcaligenes eutrophus) were expressed in Escherichia coli, Klebsiella aerogenes, and PHA-negative mutants of R. eutropha and Pseudomonas putida. While expression in E. coli strains resulted in the accumulation of poly(3-hydroxybutyrate) [PHB], strains of R. eutropha, P. putida and K. aerogenes accumulated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [poly(3HB-co-3HHx)] when even chain fatty acids were provided as carbon source, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)] when odd chain fatty acids were provided as carbon source. This suggests that fatty acid degradation can be directly accessed employing only the acetoacetyl-CoA reductase and the PHA synthase. This is also the first proof that the PHA synthase from R. eutropha can incorporate 3-hydroxyhexanoate (3HHx) into PHA and has, therefore, a broader substrate specificity than previously described.


Applied and Environmental Microbiology | 2005

Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway.

Qungang Qi; Ming Hao; Wing-on Ng; Steven C. Slater; Susan R. Baszis; James D. Weiss; Henry E. Valentin

ABSTRACT Tocopherols are important antioxidants in lipophilic environments. They are synthesized by plants and some photosynthetic bacteria. Recent efforts to analyze and engineer tocopherol biosynthesis led to the identification of Synechocystis sp. strain PCC 6803 as a well-characterized model system. To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803. The nirA promoter from Synechococcus sp. strain PCC 7942, which is repressed by ammonium and induced by nitrite (S.-I. Maeda et al., J. Bacteriol. 180:4080-4088, 1998), was chosen to drive the expression of Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase. The enzyme catalyzes the formation of homogentisic acid from p-hydroxyphenylpyruvate. Expression of this gene under inducing conditions resulted in up to a fivefold increase in total tocopherol levels with up to 20% of tocopherols being accumulated as tocotrienols. The culture supernatant of these cultures exhibited a brown coloration, a finding indicative of homogentisic acid excretion. Enzyme assays, functional complementation, reverse transcription-PCR, and Western blot analysis confirmed transgene expression under inducing conditions only. These data demonstrate that the nirA promoter can be used to control transgene expression in Synechocystis and that homogentisic acid is a limiting factor for tocopherol synthesis in Synechocystis sp. strain PCC 6803.


Applied Microbiology and Biotechnology | 1993

Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene

Henry E. Valentin; Alexander Steinbüchel

A cosmid gene bank of partially EcoRI-digested genomic DNA from Methylobacterium extorquens IBT no. 6 was screened for DNA fragments restoring polyhydroxyalkanoic-acid (PHA) accumulation in the PHA-negative mutant Alkaligenes eutrophus H16 PHB−4. The M. extorquens PHA-synthase structural gene phaCMex was mapped on a 23-kbp EcoRI fragment by complementation studies, by hybridization experiments with heterologous DNA probes from A. eutrophus H16 encoding for phaA, phaB and phaC and by nucleic acid sequence analysis. Evidence for the presence of genes for a β-ketothiolase or an acetoacetyl-coenzyme A reductase on this fragment was not obtained. The nucleotide sequence of a 3.7-kbp region was obtained. It contained the entire 1.815-kbp phaCMex plus approximately each 900-bp upstream and downstream of phaCMex. PhaCMex encoded a protein of 605 amino acods with a relative molecular mass (Mr) of 66742, which exhibited 38.1% amino acid identity with the A. eutrophus PHA synthase. Determination of the N-terminal amino acid sequence of an Mr 65 000 protein, which was enriched concomitantly with the purification of PHA granules in sucrose gradients, revealed a sequence that was identical with the amino acid sequence deduced from the most probable translation start codon except for a valine, which was obviously removed post-translationally. Enzyme analysis, which was done with the native gene and a phaCMex‘-’lacZ fusion gene, gave no evidence for expression of phaCMex in Escherichia coli.


Applied Microbiology and Biotechnology | 1996

Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids

Henry E. Valentin; Andreas Schönebaum; Alexander Steinbüchel

Abstractu2002A recombinant strain of Pseudomonas putida GPp104 (pHP1014::E146), which expressed the polyhydroxyalkanoic acid (PHA) synthase of Thiocapsa pfennigii exhibiting an unusual substrate specificity at a high level was incubated in two-stage batch or fed-batch accumulation experiments with 5-hydroxyhexanoic acid (5HHx) as carbon source in the second cultivation phase, copolyesters of 3-hydroxybutyric acid (3HB) plus 5HHx, or of 3HB, 3-hydroxyhexanoic acid (3HHx) plus 5HHx were accumulated as revealed by gas-chromatographic and 13C-NMR spectroscopic analysis. When the recombinant P. putida GPp104 was incubated with 4-hydroxyheptanoic acid (4HHp) as carbon source in the second cultivation phase, a copolyester consisting of 3HB, 3-hydroxyvaleric acid and 3- and 4-hydroxyheptanoic acid accumulated. Providing 4-hydroxyoctanoic acid as carbon source in the second cultivation phase led to the accumulation of a polyester that contained 1–2u2005mol% 4-hydroxyoctanoic acid besides 3-hydroxyoctanoic acid, 3HHx, 3-hydroxyvaleric acid and 3HB. In addition to PHA containing these new constituents, PHA with 4-hydroxyvaleric acid was accumulated from laevulinic acid. Eleven strains from five genera have been also analysed for their ability to utilize different carbon sources for colony growth, which might serve as potential precursors for the biosynthesis of PHA with unusual constituents. Although most of the carbon sources were utilized by some strains for colony growth, accumulation experiments gave no evidence for the accumulation of new PHA by these wild-type strains.


Journal of Environmental Polymer Degradation | 1994

Application of recombinant gene technology for production of polyhydroxyalkanoic acids: Biosynthesis of poly(4-hydroxybutyric acid) homopolyester

Alexander Steinbüchel; Henry E. Valentin; Andreas Schönebaum

Screening of a large number of bacteria revealed several strains, which utilize 1,4-butanediol and/or 4-hydroxybutyric acid (4HB) as a carbon source for growth and for synthesis of polyhydroxyalkanoic acids (PHA) containing 4HB as one constituent among others (mostly 3-hydroxybutyric acid). However, none of the wild-type strains investigated in this study was able to produce a homopolyester consisting solely of 4HB. Only several poly(3-hydroxybutyric acid)-leaky mutants ofAlcaligenes eutrophus strain JMP222 synthesized poly(4HB) homopolyester, which amounted to approximately 10% (w/w) of the cellular dry matter. If the PHA synthase structural gene ofA. eutrophus strain H16 was expressed in these mutants, the amount of poly(4HB) was increased to approximately 30% (w/w). The occurrence of poly(4HB) was demonstrated by gas chromatographic as well as1H and13C nuclear magnetic resonance spectroscopic analysis.

Collaboration


Dive into the Henry E. Valentin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge