Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry Horng-Shing Lu is active.

Publication


Featured researches published by Henry Horng-Shing Lu.


Genome Research | 2010

Natural selection on cis and trans regulation in yeasts

J. J. Emerson; Li-Ching Hsieh; Huang Mo Sung; Tzi Yuan Wang; Chih Jen Huang; Henry Horng-Shing Lu; Mei Yeh Jade Lu; Shu-Hsing Wu; Wen-Hsiung Li

Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and by trans factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we measure genome-wide allele-specific expression by deep sequencing to investigate the patterns of cis and trans expression variation between two strains of Saccharomyces cerevisiae. We propose a statistical modeling framework based on the binomial distribution that simultaneously addresses normalization of read counts derived from different parents and estimating the cis and trans expression variation parameters. We find that expression polymorphism in yeast is common for both cis and trans, though trans variation is more common. Constraint in expression evolution is correlated with other hallmarks of constraint, including gene essentiality, number of protein interaction partners, and constraint in amino acid substitution, indicating that both cis and trans polymorphism are clearly under purifying selection, though trans variation appears to be more sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our intraspecific variation suggests a significant departure from a neutral model of molecular evolution. A further examination of correlation between polymorphism and divergence within each category suggests that cis divergence is more frequently mediated by positive Darwinian selection than is trans divergence.


PLOS Computational Biology | 2009

Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes

Curt Scharfe; Henry Horng-Shing Lu; Jutta K. Neuenburg; Edward A. Allen; Guan-Cheng Li; Thomas Klopstock; Tina M. Cowan; Gregory M. Enns; Ronald W. Davis

Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evolution of the yeast protein interaction network

Hong Qin; Henry Horng-Shing Lu; Wei B. Wu; Wen-Hsiung Li

To study the evolution of the yeast protein interaction network, we first classified yeast proteins by their evolutionary histories into isotemporal categories, then analyzed the interaction tendencies within and between the categories, and finally reconstructed the main growth path. We found that two proteins tend to interact with each other if they are in the same or similar categories, but tended to avoid each other otherwise, and that network evolution mirrors the universal tree of life. These observations suggest synergistic selection during network evolution and provide insights into the hierarchical modularity of cellular networks.


Ultrasound in Medicine and Biology | 2000

An early vision-based snake model for ultrasound image segmentation

Chung-Ming Chen; Henry Horng-Shing Lu; Yu-Chen Lin

Due to the speckles and the ill-defined edges of the object of interest, the classic image-segmentation techniques are usually ineffective in segmenting ultrasound (US) images. In this paper, we present a new algorithm for segmenting general US images that is composed of two major techniques; namely, the early-vision model and the discrete-snake model. By simulating human early vision, the early-vision model can capture both grey-scale and textural edges while the speckle noise is suppressed. By performing deformation only on the peaks of the distance map, the discrete-snake model promises better noise immunity and more accurate convergence. Moreover, the constraint for most conventional snake models that the initial contour needs to be located very close to the actual boundary has been relaxed substantially. The performance of the proposed snake model has been shown to be comparable to manual delineation and superior to that of the gradient vector flow (GVF) snake model.


BMC Bioinformatics | 2008

Multidimensional scaling for large genomic data sets

Jengnan Tzeng; Henry Horng-Shing Lu; Wen-Hsiung Li

BackgroundMulti-dimensional scaling (MDS) is aimed to represent high dimensional data in a low dimensional space with preservation of the similarities between data points. This reduction in dimensionality is crucial for analyzing and revealing the genuine structure hidden in the data. For noisy data, dimension reduction can effectively reduce the effect of noise on the embedded structure. For large data set, dimension reduction can effectively reduce information retrieval complexity. Thus, MDS techniques are used in many applications of data mining and gene network research. However, although there have been a number of studies that applied MDS techniques to genomics research, the number of analyzed data points was restricted by the high computational complexity of MDS. In general, a non-metric MDS method is faster than a metric MDS, but it does not preserve the true relationships. The computational complexity of most metric MDS methods is over O(N2), so that it is difficult to process a data set of a large number of genes N, such as in the case of whole genome microarray data.ResultsWe developed a new rapid metric MDS method with a low computational complexity, making metric MDS applicable for large data sets. Computer simulation showed that the new method of split-and-combine MDS (SC-MDS) is fast, accurate and efficient. Our empirical studies using microarray data on the yeast cell cycle showed that the performance of K-means in the reduced dimensional space is similar to or slightly better than that of K-means in the original space, but about three times faster to obtain the clustering results. Our clustering results using SC-MDS are more stable than those in the original space. Hence, the proposed SC-MDS is useful for analyzing whole genome data.ConclusionOur new method reduces the computational complexity from O(N3) to O(N) when the dimension of the feature space is far less than the number of genes N, and it successfully reconstructs the low dimensional representation as does the classical MDS. Its performance depends on the grouping method and the minimal number of the intersection points between groups. Feasible methods for grouping methods are suggested; each group must contain both neighboring and far apart data points. Our method can represent high dimensional large data set in a low dimensional space not only efficiently but also effectively.


Ultrasound in Medicine and Biology | 2001

A textural approach based on gabor functions for texture edge detection in ultrasound images

Chung-Ming Chen; Henry Horng-Shing Lu; Ko-Chung Han

Edge detection is an important, but difficult, step in quantitative ultrasound (US) image analysis. In this paper, we present a new textural approach for detecting a class of edges in US images; namely, the texture edges with a weak regional mean gray-level difference (RMGD) between adjacent regions. The proposed approach comprises a vision model-based texture edge detector using Gabor functions and a new texture-enhancement scheme. The experimental results on the synthetic edge images have shown that the performances of the four tested textural and nontextural edge detectors are about 20%-95% worse than that of the proposed approach. Moreover, the texture enhancement may improve the performance of the proposed texture edge detector by as much as 40%. The experiments on 20 clinical US images have shown that the proposed approach can find reasonable edges for real objects of interest with the performance of 0.4 +/- 0.08 in terms of the Pratts figure.


Journal of Biomedical Informatics | 2008

Segmentation of cDNA microarray images by kernel density estimation

Tai-Been Chen; Henry Horng-Shing Lu; Yun-Shien Lee; Hsiu-Jen Lan

The segmentation of cDNA microarray spots is essential in analyzing the intensities of microarray images for biological and medical investigation. In this work, nonparametric methods using kernel density estimation are applied to segment two-channel cDNA microarray images. This approach groups pixels into both a foreground and a background. The segmentation performance of this model is tested and evaluated with reference to 16 microarray data. In particular, spike genes with various contents are spotted in a microarray to examine and evaluate the accuracy of the segmentation results. Duplicated design is implemented to evaluate the accuracy of the model. The results of this study demonstrate that this method can cluster pixels and estimate statistics regarding spots with high accuracy.


Ultrasound in Medicine and Biology | 2001

A dual-snake model of high penetrability for ultrasound image boundary extraction.

Chung-Ming Chen; Henry Horng-Shing Lu; An-Ting Hsiao

Most deformable models require the initial contour to be placed close to the boundary of the object of interest for boundary extraction of ultrasound (US) images, which is impractical in many clinical applications. To allow a distant initial contour, a new dual-snake model promising high penetrability through the interference of the noises is proposed in this paper. The proposed dual-snake model features a new far-reaching external force, called the discrete gradient flow, a connected component-weighted image force, and an effective stability evaluation of two underlying snakes. The experimental results show that, with a distant initial contour, the mean distance from the derived boundary to the desired boundary is less than 1.4 pixels, and most snake elements are within 2.7 pixels of the desired boundaries for the synthetic images with CNR > or =1. For the clinical US images, the mean distance is less than 1.9 pixels, and most snake elements are within 3 pixels of the desired boundaries.


Ultrasound in Medicine and Biology | 2002

Cell-based dual snake model: A new approach to extracting highly winding boundaries in the ultrasound images

Chung-Ming Chen; Henry Horng-Shing Lu; Yueng-Shiang Huang

Two common deficiencies of most conventional deformable models are the need to place the initial contour very close to the desired boundary and the incapability of capturing a highly winding boundary for sonographic boundary extraction. To remedy these two deficiencies, a new deformable model (namely, the cell-based dual snake model) is proposed in this paper. The basic idea is to apply the dual snake model in the cell-based deformation manner. While the dual snake model provides an effective mechanism allowing a distant initial contour, the cell-based deformation makes it possible to catch the winding characteristics of the desired boundary. The performance of the proposed cell-based dual snake model has been evaluated on synthetic images with simulated speckles and on the clinical ultrasound (US) images. The experimental results show that the mean distances from the derived to the desired boundary points are 0.9 +/- 0.42 pixels and 1.29 +/- 0.39 pixels for the synthetic and the clinical US images, respectively.


Pattern Recognition | 2007

Iterative sliced inverse regression for segmentation of ultrasound and MR images

Han-Ming Wu; Henry Horng-Shing Lu

In this study, we propose an integrated approach based on iterative sliced inverse regression (ISIR) for the segmentation of ultrasound and magnetic resonance (MR) images. The approach integrates two stages. The first is the unsupervised clustering which combines multidimensional scaling (MDS) with K-Means. The dimension reduction based on MDS is employed to obtain fewer representative variates as input variables for K-Means. This step intends to generate the initial group labels of the training data for the second stage of supervised segmentation. We then combine the SIR with the nearest mean classifier (NMC) or the support vector machine (SVM) to iteratively update the group labels for supervised segmentation. The method of SIR is introduced by Li [Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86 (1991) 316-342] to explore the effective dimension reduction (e.d.r.) directions from the training data embedded in high-dimensional space. The test data are then projected onto these directions and the classifiers are further applied to classify the test data. The integrated approach based on ISIR is evaluated on simulated and clinical images, which include ultrasound and MR images. The evaluation results indicate that this approach provides an improvement of image segmentation over the methods to be compared without dimension reduction.

Collaboration


Dive into the Henry Horng-Shing Lu's collaboration.

Top Co-Authors

Avatar

Chung-Ming Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyh-Cheng Chen

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Jyh-Jen Horng Shiau

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Cheng-Sheng Yu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chih-Ming Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Hung-Hui Juan

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Ren-Shyan Liu

Taipei Veterans General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge