Henry Maxfield
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henry Maxfield.
Journal of High Energy Physics | 2013
Veronika E. Hubeny; Henry Maxfield; Mukund Rangamani; Erik Tonni
A bstractWe consider the entanglement entropy for holographic field theories in finite volume. We show that the Araki-Lieb inequality is saturated for large enough subregions, implying that the thermal entropy can be recovered from the knowledge of the region and its complement. We observe that this actually is forced upon us in holographic settings due to non-trivial features of the causal wedges associated with a given boundary region. In the process, we present an infinite set of extremal surfaces in Schwarzschild-AdS geometry anchored on a given entangling surface. We also offer some speculations regarding the homology constraint required for computing holographic entanglement entropy.
Journal of High Energy Physics | 2014
Veronika E. Hubeny; Henry Maxfield
A bstractWe continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous.
Journal of High Energy Physics | 2018
Zicao Fu; Alexander Maloney; Donald Marolf; Henry Maxfield; Zhencheng Wang
A bstractWe study the “complexity equals volume” (CV) and “complexity equals action” (CA) conjectures by examining moments of of time symmetry for AdS3 wormholes having n asymptotic regions and arbitrary (orientable) internal topology. For either prescription, the complexity relative to n copies of the M = 0 BTZ black hole takes the form ΔC = αcχ, where c is the central charge and χ is the Euler character of the bulk time-symmetric surface. The coefficients αV = −4π/3, αA = 1/6 defined by CV and CA are independent of both temperature and any moduli controlling the geometry inside the black hole. Comparing with the known structure of dual CFT states in the hot wormhole limit, the temperature and moduli independence of αV , αA implies that any CFT gate set defining either complexity cannot be local. In particular, the complexity of an efficient quantum circuit building local thermofield-double-like entanglement of thermal-sized patches does not depend on the separation of the patches so entangled. We also comment on implications of the (positive) sign found for αA, which requires the associated complexity to decrease when handles are added to our wormhole.
Journal of High Energy Physics | 2017
John Cardy; Alexander Maloney; Henry Maxfield
A bstractWe derive an asymptotic formula for operator product expansion coefficients of heavy operators in two dimensional conformal field theory. This follows from modular invariance of the genus two partition function, and generalises the asymptotic formula for the density of states from torus modular invariance. The resulting formula is universal, depending only on the central charge, but involves the asymptotic behaviour of genus two conformal blocks. We use monodromy techniques to compute the asymptotics of the relevant blocks at large central charge to determine the behaviour explicitly.
Journal of High Energy Physics | 2015
Felix M. Haehl; Thomas Hartman; Donald Marolf; Henry Maxfield; Mukund Rangamani
A bstractThe holographic prescription for computing entanglement entropy requires that the bulk extremal surface, whose area encodes the amount of entanglement, satisfies a homology constraint. Usually this is stated as the requirement of a (spacelike) interpolating surface that connects the region of interest and the extremal surface. We investigate to what extent this constraint is upheld by the generalized gravitational entropy argument, which relies on constructing replica symmetric q-fold covering spaces of the bulk, branched at the extremal surface. We prove (at the level of topology) that the putative extremal surface satisfies the homology constraint if and only if the corresponding branched cover can be constructed for every positive integer q. We give simple examples to show that homology can be violated if the cover exists for some values q but not others, along with some other issues.
Journal of High Energy Physics | 2015
Henry Maxfield
A bstractThe Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS3, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ2
Journal of High Energy Physics | 2017
Per Kraus; Alexander Maloney; Henry Maxfield; Gim Seng Ng; Jie-qiang Wu
Journal of High Energy Physics | 2017
Alexander Maloney; Henry Maxfield; Gim Seng Ng
\mathrm{\mathbb{R}}{\mathrm{\mathbb{P}}}^2
Classical and Quantum Gravity | 2016
Henry Maxfield; Simon F. Ross; Benson Way
Journal of High Energy Physics | 2018
Xi Dong; Shaun Maguire; Alexander Maloney; Henry Maxfield
geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.