Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry P. Adams is active.

Publication


Featured researches published by Henry P. Adams.


Nature | 2008

REST maintains self-renewal and pluripotency of embryonic stem cells

Sanjay K. Singh; Mohamedi N. Kagalwala; Jan Parker-Thornburg; Henry P. Adams; Sadhan Majumder

The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal—even when these cells are grown under self-renewal conditions—and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.


PLOS Genetics | 2014

Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

Xin Zhou; Klaus von der Mark; Stephen P. Henry; William Norton; Henry P. Adams; Benoit de Crombrugghe

One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.


Journal of Clinical Investigation | 2012

ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression

Young Ho Ahn; Don L. Gibbons; Deepavali Chakravarti; Chad J. Creighton; Zain H. Rizvi; Henry P. Adams; Alexander Pertsemlidis; Philip A. Gregory; Josephine A. Wright; Gregory J. Goodall; Elsa R. Flores; Jonathan M. Kurie

Metastatic cancer is extremely difficult to treat, and the presence of metastases greatly reduces a cancer patients likelihood of long-term survival. The ZEB1 transcriptional repressor promotes metastasis through downregulation of microRNAs (miRs) that are strong inducers of epithelial differentiation and inhibitors of stem cell factors. Given that each miR can target multiple genes with diverse functions, we posited that the prometastatic network controlled by ZEB1 extends beyond these processes. We tested this hypothesis using a mouse model of human lung adenocarcinoma metastasis driven by ZEB1, human lung carcinoma cells, and human breast carcinoma cells. Transcriptional profiling studies revealed that ZEB1 controls the expression of numerous oncogenic and tumor-suppressive miRs, including miR-34a. Ectopic expression of miR-34a decreased tumor cell invasion and metastasis, inhibited the formation of promigratory cytoskeletal structures, suppressed activation of the RHO GTPase family, and regulated a gene expression signature enriched in cytoskeletal functions and predictive of outcome in human lung adenocarcinomas. We identified several miR-34a target genes, including Arhgap1, which encodes a RHO GTPase activating protein that was required for tumor cell invasion. These findings demonstrate that ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression and provide a compelling rationale to develop miR-34a as a therapeutic agent in lung cancer patients.


Oncogene | 2007

Cortical stabilization of β -catenin contributes to NHERF1/EBP50 tumor suppressor function

E. L. Kreimann; Fabiana C. Morales; J. De Orbeta-Cruz; Y. Takahashi; Henry P. Adams; Ta Jen Liu; P. D. McCrea; Maria-Magdalena Georgescu

Anchorage-independent growth is a hallmark of tumor growth and results from enhanced proliferation and altered cell–cell and cell-matrix interactions. By using gene-deficient mouse embryonic fibroblasts (MEFs), we showed for the first time that NHERF1/EBP50 (Na/H exchanger regulator factor 1/ezrin-radixin-moesin binding phosphoprotein 50), an adapter protein with membrane localization under physiological conditions, inhibits cell motility and is required to suppress anchorage-independent growth. Both NHERF1 PDZ domains are necessary for the tumor suppressor effect. NHERF1 associates directly through the PDZ2 domain with β-catenin and is required for β-catenin localization at the cell–cell junctions in MEFs. Mechanistically, the absence of NHERF1 selectively decreased the interaction of β-catenin with E-cadherin, but not with N-cadherin. The ensuing disorganization of E-cadherin-mediated adherens junctions as well as the observed moderate increase in β-catenin transcriptional activity contributed most likely to the anchorage-independent growth of NHERF1-deficient MEFs. In vivo, NHERF1 is specifically localized at the apical brush-border membrane in intestinal epithelial cells and is required to maintain a fraction of the cortical β-catenin at this level. Thus, NHERF1 emerges as a cofactor essential for the integrity of epithelial tissues by maintaining the proper localization and complex assembly of β-catenin.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aurora B kinase phosphorylates and instigates degradation of p53

Chris Gully; Guermarie Velazquez-Torres; Ji Hyun Shin; Enrique Fuentes-Mattei; Edward Wang; Colin Carlock; Jian Chen; Daniel Rothenberg; Henry P. Adams; Hyun Ho Choi; Sergei Guma; Liem Phan; Ping Chieh Chou; Chun Hui Su; Fanmao Zhang; Jiun Sheng Chen; Tsung Ying Yang; Sai Ching J. Yeung; Mong Hong Lee

Aurora B is a mitotic checkpoint kinase that plays a pivotal role in the cell cycle, ensuring correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in many types of human cancers, which has made it an attractive target for cancer therapies. Tumor suppressor p53 is a genome guardian and important negative regulator of the cell cycle. Whether Aurora B and p53 are coordinately regulated during the cell cycle is not known. We report that Aurora B directly interacts with p53 at different subcellular localizations and during different phases of the cell cycle (for instance, at the nucleus in interphase and the centromeres in prometaphase of mitosis). We show that Aurora B phosphorylates p53 at S183, T211, and S215 to accelerate the degradation of p53 through the polyubiquitination–proteasome pathway, thus functionally suppressing the expression of p53 target genes involved in cell cycle inhibition and apoptosis (e.g., p21 and PUMA). Pharmacologic inhibition of Aurora B in cancer cells with WT p53 increased p53 protein level and expression of p53 target genes to inhibit tumor growth. Together, these results define a mechanism of p53 inactivation during the cell cycle and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise the tumor suppressor function of p53. We have elucidated the antineoplastic mechanism for Aurora B kinase inhibitors in cancer cells with WT p53.


Molecular and Cellular Biology | 2007

NHERF1/EBP50 Head-to-Tail Intramolecular Interaction Masks Association with PDZ Domain Ligands

Fabiana C. Morales; Yoko Takahashi; Safan Momin; Henry P. Adams; Xiaomin Chen; Maria-Magdalena Georgescu

ABSTRACT Loss of cell polarity is one of the initial alterations in the development of human epithelial cancers. Na+/H+ exchanger regulatory factor (NHERF) homologous adaptors 1 and 2 are membrane-associated proteins composed of two amino (N)-terminal PDZ domains and an ezrin-radixin-moesin (ERM)-binding (EB) carboxyl (C)-terminal region. We describe here an intramolecular conformation of NHERF1/EBP50 (ERM-binding phosphoprotein 50) in which the C-terminal EB region binds to the PDZ2 domain. This novel head-to-tail conformation masked the interaction of both PDZ domains with PDZ domain-specific ligands, such as PTEN and β-catenin. An EB region composite structure comprising an α-helix ending in a PDZ-binding motif imparted opposite effects to NHERF1 associations, mediating binding to ERM proteins and inhibiting binding of PDZ domain ligands. The PDZ domain inhibition was released by prior association of ezrin with the EB region, a condition that occurs in vivo and likely disrupts NHERF1 head-to-tail interaction. In contrast, NHERF2 did not present a regulatory mechanism for protein complex formation. Functionally, NHERF1 is required to organize complexes at the apical membranes of polarized epithelial cells. The regulation of NHERF1 interactions at the apical membrane thus appears to be a dynamic process that is important for maintaining epithelial-tissue integrity.


Oncogene | 2007

Cortical stabilization of β-catenin contributes to NHERF1sEBP50 tumor suppressor function

E. L. Kreimann; Fabiana C. Morales; J. De Orbeta-Cruz; Y. Takahashi; Henry P. Adams; T-J Liu; P. D. McCrea; M-M Georgescu

Anchorage-independent growth is a hallmark of tumor growth and results from enhanced proliferation and altered cell–cell and cell-matrix interactions. By using gene-deficient mouse embryonic fibroblasts (MEFs), we showed for the first time that NHERF1/EBP50 (Na/H exchanger regulator factor 1/ezrin-radixin-moesin binding phosphoprotein 50), an adapter protein with membrane localization under physiological conditions, inhibits cell motility and is required to suppress anchorage-independent growth. Both NHERF1 PDZ domains are necessary for the tumor suppressor effect. NHERF1 associates directly through the PDZ2 domain with β-catenin and is required for β-catenin localization at the cell–cell junctions in MEFs. Mechanistically, the absence of NHERF1 selectively decreased the interaction of β-catenin with E-cadherin, but not with N-cadherin. The ensuing disorganization of E-cadherin-mediated adherens junctions as well as the observed moderate increase in β-catenin transcriptional activity contributed most likely to the anchorage-independent growth of NHERF1-deficient MEFs. In vivo, NHERF1 is specifically localized at the apical brush-border membrane in intestinal epithelial cells and is required to maintain a fraction of the cortical β-catenin at this level. Thus, NHERF1 emerges as a cofactor essential for the integrity of epithelial tissues by maintaining the proper localization and complex assembly of β-catenin.


Oncogene | 2008

Targeted disruption of Aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality

Kaori Sasai; John M. Parant; M. E. Brandt; Jennifer Carter; Henry P. Adams; Sanford A. Stass; Ann M. Killary; Hiroshi Katayama; Subrata Sen

Aurora A (also known as STK15/BTAK in humans), a putative oncoprotein naturally overexpressed in many human cancers, is a member of the conserved Aurora protein serine/threonine kinase family that is implicated in the regulation of G2–M phases of the cell cycle. In vitro studies utilizing antibody microinjection, siRNA silencing and small molecule inhibitors have indicated that Aurora A functions in early as well as late stages of mitosis. However, due to limitations in specificity of the techniques, exact functional roles of the kinase remain to be clearly elucidated. In order to identify the physiological functions in vivo, we have generated Aurora A null mouse embryos, which show severe defects at 3.5 d.p.c. (days post-coitus) morula/blastocyst stage and lethality before 8.5 d.p.c. Null embryos at 3.5 d.p.c. reveal growth retardation with cells in mitotic disarray manifesting disorganized spindle, misaligned and lagging chromosomes as well as micronucleated cells. These findings provide the first unequivocal genetic evidence for an essential physiological role of Aurora A in normal mitotic spindle assembly, chromosome alignment segregation and maintenance of viability in mammalian embryos.


Current Biology | 2003

The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription

Zhenbo Han; Jennifer R. Saam; Henry P. Adams; Susan E. Mango; Jill M. Schumacher

BACKGROUND The Tousled kinases comprise an evolutionarily conserved family of proteins that have been previously implicated in chromatin remodeling, DNA replication, and DNA repair. Here, we used RNA mediated interference (RNAi) to determine the function of the C. elegans Tousled kinase (TLK-1) during embryonic development. RESULTS TLK-1-deficient embryos arrested with a phenotype reminiscent of embryos that are broadly defective in transcription, and the expression of several reporter genes was dramatically reduced in tlk-1(RNAi) embryos. Furthermore, posttranslational modifications of RNA polymerase II (RNAPII) and histone H3 that have been correlated with transcription elongation, phosphorylation of the RNAPII CTD at Serine 2, and methylation of histone H3 at Lysine 36 were found at significantly reduced levels in tlk-1(RNAi) embryos as compared to wild-type. CONCLUSIONS These results reveal a surprising requirement for a Tousled-like kinase in transcriptional regulation during development, likely during the elongation phase. In addition, our results confirm that the link between RNAPII phosphorylation and histone H3 methylation previously observed in budding yeast is functionally conserved in metazoans.


Cancer Cell | 2012

Aurora Kinase-A Inactivates DNA Damage-Induced Apoptosis and Spindle Assembly Checkpoint Response Functions of p73

Hiroshi Katayama; Jin Wang; Warapen Treekitkarnmongkol; Hidehiko Kawai; Kaori Sasai; Hui Zhang; Hua Wang; Henry P. Adams; Shoulei Jiang; Sandip N. Chakraborty; Fumio Suzuki; Ralph B. Arlinghaus; Jinsong Liu; James A. Mobley; William E. Grizzle; Huamin Wang; Subrata Sen

Elevated Aurora kinase-A expression is correlated with abrogation of DNA damage-induced apoptotic response and mitotic spindle assembly checkpoint (SAC) override in human tumor cells. We report that Aurora-A phosphorylation of p73 at serine235 abrogates its transactivation function and causes cytoplasmic sequestration in a complex with the chaperon protein mortalin. Aurora-A phosphorylated p73 also facilitates inactivation of SAC through dissociation of the MAD2-CDC20 complex in cells undergoing mitosis. Cells expressing phosphor-mimetic mutant (S235D) of p73 manifest altered growth properties, resistance to cisplatin- induced apoptosis, as well as premature dissociation of the MAD2-CDC20 complex, and accelerated mitotic exit with SAC override in the presence of spindle damage. Elevated cytoplasmic p73 in Aurora-A overexpressing primary human tumors corroborates the experimental findings.

Collaboration


Dive into the Henry P. Adams's collaboration.

Top Co-Authors

Avatar

Benoit de Crombrugghe

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Colin Carlock

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Cindy Zhou

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Fabiana C. Morales

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jean Wu

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Richard R. Behringer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sadhan Majumder

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Stephen P. Henry

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Subrata Sen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xin Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge