Henryka Długońska
University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henryka Długońska.
Molecular and Biochemical Parasitology | 2002
Gaby Reichmann; Henryka Długońska; Hans-Georg Fischer
T cell clone 3Tx19 detects a Toxoplasma gondii tachyzoite protein which, in high resolution 2D gel electrophoresis, runs at 36 kDa apparent MW with two spots of pI 5.9 and 6.5, thus exhibiting a migration pattern distinct from those of other known Toxoplasma antigens. The sequences of peptide fragments from tryptic digestion of the more prominent protein spot allowed the design of oligonucleotide primers to obtain the coding cDNA sequence. Sequence analysis of cDNA from strain BK revealed a 363 amino acid open reading frame, defined by all nine peptide sequences determined. The deduced protein sequence contains two hydrophobic segments, one near the N-terminus including a predicted signal peptide and a shorter second at the carboxy terminus, but homology to any other known protein is lacking. With synthetic peptides covering the complete primary structure, the epitope for clone 3Tx19 was mapped within the deduced partial sequence, which had remained unconfirmed by tryptic peptides. Antibodies raised against another, putative B cell epitope peptide detected the same two protein spots in 2D gel, indicating that they are antigenically related isoforms. The protein p36 is expressed by T. gondii isolates of all three intraspecies subgroups, but not in the bradyzoite stage. In intracellular tachyzoites, p36 colocalizes with rhoptry proteins and has a distribution pattern disparate from that of dense granule and microneme proteins. Subcellular fractionation indicated that p36 is a soluble constituent of tachyzoites. We suggest that this T cell-stimulatory novel rhoptry protein of T. gondii be named ROP9. It represents a marker of the tachyzoite stage.
Parasitology Research | 2012
Justyna Gatkowska; Marek Wieczorek; Bozena Dziadek; Katarzyna Dzitko; Henryka Długońska
Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls.
Experimental Parasitology | 2013
Justyna Gatkowska; Marek Wieczorek; Bozena Dziadek; Katarzyna Dzitko; Henryka Długońska
The protozoan parasite Toxoplasma gondii has the ability to alter intermediate host behavior, most impressively the natural aversion to cat scent, to favor the predation by the definitive host. However, the underlying mechanism of the observed phenomenon still remains unknown. Since changes in the neurotransmitter level are postulated as a possible contributing factor, the aim of this work was to assess the monoamine systems activity in specified brain regions involved in the natural defense behaviors, emotion evaluation, and motor and sensory stimuli integration in experimentally T. gondii infected mice compared to uninfected controls. Taking into account the natural differences between genders, the experiments were carried out on both male and female mice. Our results revealed statistically significant changes in all tested monoamine systems with regard to both gender and time after T. gondii invasion. Acute toxoplasmosis was accompanied by a decrease in noradrenergic system activity in females and its slight increase in some brain areas of males. Acute invasion also induced a rise in serotonin system activity, mostly in males. The most striking observation was an increase in the dopamine release noted in acutely infected males. We discuss our results in terms of their possible contribution to T. gondii-induced intermediate host behavior alterations and parasite transmission and with regard to postulated relationship between T. gondii seroprevalence and occurrence of certain disorders such as schizophrenia in humans.
Microbes and Infection | 2001
Nicole Nischik; Bartholomäus Schade; Katarzyna Dytnerska; Henryka Długońska; Gaby Reichmann; Hans-Georg Fischer
Determinants of Toxoplasma gondii virulence are still unknown, although genetic markers associated with T. gondii pathogenicity or host susceptibility to infection have been identified. To define indicator proteins of mouse virulence, type I strain parasites were attenuated by continuous passage in fibroblast culture and compared with the parental strain passaged in mice. The loss of acute virulence, evident by a 1000-fold higher pathogen dose causing 100% lethality in mice correlated with a less efficient infection of inflammatory cells at the site of inoculation, while parasite proliferation and invasiveness in vitro proved unimpaired. Infection with the attenuated parasites elicited earlier local interleukin-12 and strong interferon-gamma responses in vivo, although the activity that triggers interleukin-12 secretion in macrophages is reduced in the attenuated compared to the virulent strain variant. The interleukin-12-inducing T. gondii stimulus was identified as a protein(s) present in tachyzoite excretory products. Comparative proteome analysis combined with immunodetection and quantitation of a variety of T. gondii antigens indicated that the steady-state levels of actin, catalase, microneme protein 5, as well as dense granule proteins 1, 2, 3, 4, 5, 7, 8 and nucleoside triphosphate hydrolase 1 are decreased in the attenuated phenotype, whereas the surface antigen 1 and rhoptry protein 1 are produced at a similar level by virulent and attenuated parasites. In conclusion, these findings reveal a correlation between the efficient establishment of T. gondii infection in vivo and parasite synthesis of actin, catalase and several excretory proteins, and thus postulate a role for these molecules in acute virulence.
Experimental Parasitology | 2009
Bozena Dziadek; Justyna Gatkowska; Anna Brzostek; Jaroslaw Dziadek; Katarzyna Dzitko; Henryka Długońska
Toxoplasmosis is a one of the most world-wide spread zoonosis representing a very serious clinical and veterinary problem. In the presented study, we evaluated the protective efficacy of a combined recombinant ROP2 and ROP4 subunit vaccine in a chronic Toxoplasma gondii infection in mice. The recombinant ROP2 (rROP2) and ROP4 (rROP4) proteins were cloned and expressed in Escherichia coli and then used for the immunization of C3H/HeJ mice. Both antigens generated a strong systemic mixed Th1/Th2 response polarized towards IgG1 antibody isotype. In contrast to rROP2 stimulating only the specific IL-2 release, rROP4 and crude toxoplasma lysate antigen (TLA) used as a source of native forms of the parasite proteins induced significant proliferation of splenocytes and specific production of IFN-gamma as well as IL-2, the Th1-type cytokines. Challenge of rROP2 and rROP4-vaccinated mice with cysts of low virulent T. gondii DX strain resulted in a partial protection effect with a significantly lower brain parasites load when compared with control animals. In the immunized group of mice the brain cysts number was reduced by nearly 46% as was determined in two independent experiments. These results suggest that, similar to ROP2, rhoptry protein ROP4 could be a very good candidate for future anti-T. gondii multicomponent vaccine based on the recombinant forms of different parasite proteins.
Vaccine | 2011
Bozena Dziadek; Justyna Gatkowska; Anna Brzostek; Jaroslaw Dziadek; Katarzyna Dzitko; Marcin M. Grzybowski; Henryka Długońska
The great clinical and economical impact of Toxoplasma gondii infections makes the development of an effective vaccine for controlling toxoplasmosis an extremely important aim. In the presented study, we evaluate the protective and immunogenic properties of three recombinant subunit vaccines composed of rROP2+rGRA4+rSAG1, rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 proteins of T. gondii in an experimental toxoplasmosis model in the C3H/HeJ and C57BL/6 mouse strains. All three recombinant vaccines induced partial protection as measured by the reduction of brain cyst burden following challenge with five tissue cysts of the low virulence DX T. gondii strain. The level of protection was dependent on the antigen composition of the vaccine and the genetic background of the laboratory animals. The strongest protection against chronic toxoplasmosis was induced in both C3H/HeJ and C57BL/6 mice by the mixture of rhoptry proteins rROP2 and rROP4 combined with tachyzoite major protein rSAG1. The average parasite burden in these groups of mice was reduced by 71% and 90%, respectively, compared to non-vaccinated mice. The observed protective effect was related to the vaccine-induced cellular and humoral immune responses, as measured by the antigen-induced release of the Th1 cytokines IFN-γ and IL-2, the antigen-stimulated proliferation of spleen cells of vaccinated animals in comparison to control animals and the development of systemic antigen-specific IgG1 and IgG2a (C3H/HeJ) or IgG2c (C57BL/6) antibodies. Our studies show that recombinant rROP2, rROP4, rGRA4 and rSAG1 antigens may be promising candidates for a subunit vaccine against toxoplasmosis. Additionally, we demonstrate that the ideal composition of vaccine antigens can be equally effective in mice with different genetic backgrounds and variable levels of innate resistance to toxoplasmosis, resulting in strong protection against T. gondii invasion.
Experimental Parasitology | 2012
Bozena Dziadek; Justyna Gatkowska; Marcin M. Grzybowski; Jaroslaw Dziadek; Katarzyna Dzitko; Henryka Długońska
Toxoplasmosis is one of the worlds most widespread zoonoses caused by protozoan parasite Toxoplasma gondii. The development of an effective vaccine for controlling toxoplasmosis is an extremely important issue due to the serious clinical and veterinary outcomes of this parasitosis. The objective of this study was evaluation of vaccine potential of three trivalent subunit recombinant vaccines composed of rROP2+rGRA4+rSAG1, rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 against chronic toxoplasmosis in BALB/c (H-2(d)) mice. All tested vaccines provided a partial protection against challenge with tissue cysts of the low virulence DX T. gondii strain, but the strongest level of protection was induced by the mixtures of both rhoptry proteins (rROP2 and rROP4) administered with the dense granule rGRA4 antigen or the main surface rSAG1 protein. The average parasite burden in these groups of vaccinated BALB/c mice was reduced by 84% and 77%, respectively, compared to the control PBS-injected animals. The vaccine-induced protection was correlated with the development of cellular and humoral immune responses demonstrated by the antigen-specific in vitro proliferation of spleen cells, the specific antigen-induced in vitro synthesis of Th1-type cytokines, IFN-γ and IL-2, and the generation of the high titers of systemic antigen-specific IgG1 and IgG2a antibodies. This study completed and confirmed our earlier investigations in C3H/HeJ (H-2(k)) and C57BL/6 (H-2(b)) mouse strains on the utility of the tested trivalent recombinant antigen-cocktails as potential vaccines against chronic toxoplasmosis and showed that particularly rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 protein-combinations are very effective in the development of a high level of protection irrespective of the genetic backgrounds and innate resistance to toxoplasmosis of the laboratory mice. It makes these two mixtures of recombinant antigens very promising for further experiments.
Parasitology Research | 2001
Henryka Długońska; Katarzyna Dytnerska; Gaby Reichmann; Stefan Stachelhaus; Hans-Georg Fischer
Abstract. High resolution two-dimensional separation of Toxoplasma gondii tachyzoite lysate revealed up to 224 distinct protein spots in Coomassie-stained gel. Computional matching of 14 digitized gels yielded a standard two-dimensional proteome map. The excretory T. gondii dense granule proteins GRA1–GRA8, S16/acid phosphatase, nucleoside triphosphate hydrolase, and H4 were identified by Western blotting of both total gel and isolated protein spots. In addition, two excretory antigens defined by parasite-specific monoclonal T cells, p36 and p40, were mapped by a novel T-cell blotting technique based on electroeluting single protein spots and testing the eluates for antigenic activity against the T-cell clones. In summary, these results represent a first step in Toxoplasma proteome analysis.
Molecular and Biochemical Parasitology | 1998
Susanne Nockemann; Henryka Długońska; Birgit Henrich; Annette Kitzerow; Walter Däubener
A Toxoplasma gondii tachyzoite expression library was screened with immune sera from T. gondii infected patients. Among others, one gene product reacted strongly with human sera and was further investigated. The gene called B10 was shown to encode a 41 kDa antigen. The complete genomic nucleotide sequence of the B10 protein has been analysed and was shown to contain one intron with conserved splice junctions. Southern blot analysis indicated that B10 is a single-copy gene. The corresponding 1.5 kb cDNA encodes a 318 amino acid sequence of mainly hydrophilic character with a putative signal sequence of 19 amino acids and no further trans-membrane domain. Immunofluorescence assays and immunoblots with a preparation of excreted-secreted antigens (ESA) suggested that the native protein is secreted into the parasitophorous vacuole and its delimiting membrane, indicating that B10 is a member of the ESA family of T. gondii. Recombinant B10 protein exhibited a strong reactivity with human serum samples both in ELISA and in immunoblots.
Parasitology Research | 2015
Marcin M. Grzybowski; Bozena Dziadek; Justyna Gatkowska; Katarzyna Dzitko; Henryka Długońska
Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite’s native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.